A First Course in Machine Learning, Second Edition


Author: Simon Rogers,Mark Girolami
Publisher: CRC Press
ISBN: 1498738567
Category: Business & Economics
Page: 427
View: 7193
DOWNLOAD NOW »
"A First Course in Machine Learning by Simon Rogers and Mark Girolami is the best introductory book for ML currently available. It combines rigor and precision with accessibility, starts from a detailed explanation of the basic foundations of Bayesian analysis in the simplest of settings, and goes all the way to the frontiers of the subject such as infinite mixture models, GPs, and MCMC." —Devdatt Dubhashi, Professor, Department of Computer Science and Engineering, Chalmers University, Sweden "This textbook manages to be easier to read than other comparable books in the subject while retaining all the rigorous treatment needed. The new chapters put it at the forefront of the field by covering topics that have become mainstream in machine learning over the last decade." —Daniel Barbara, George Mason University, Fairfax, Virginia, USA "The new edition of A First Course in Machine Learning by Rogers and Girolami is an excellent introduction to the use of statistical methods in machine learning. The book introduces concepts such as mathematical modeling, inference, and prediction, providing ‘just in time’ the essential background on linear algebra, calculus, and probability theory that the reader needs to understand these concepts." —Daniel Ortiz-Arroyo, Associate Professor, Aalborg University Esbjerg, Denmark "I was impressed by how closely the material aligns with the needs of an introductory course on machine learning, which is its greatest strength...Overall, this is a pragmatic and helpful book, which is well-aligned to the needs of an introductory course and one that I will be looking at for my own students in coming months." —David Clifton, University of Oxford, UK "The first edition of this book was already an excellent introductory text on machine learning for an advanced undergraduate or taught masters level course, or indeed for anybody who wants to learn about an interesting and important field of computer science. The additional chapters of advanced material on Gaussian process, MCMC and mixture modeling provide an ideal basis for practical projects, without disturbing the very clear and readable exposition of the basics contained in the first part of the book." —Gavin Cawley, Senior Lecturer, School of Computing Sciences, University of East Anglia, UK "This book could be used for junior/senior undergraduate students or first-year graduate students, as well as individuals who want to explore the field of machine learning...The book introduces not only the concepts but the underlying ideas on algorithm implementation from a critical thinking perspective." —Guangzhi Qu, Oakland University, Rochester, Michigan, USA

Maschinelles Lernen


Author: Ethem Alpaydın
Publisher: Oldenbourg Verlag
ISBN: 9783486581140
Category:
Page: 440
View: 2573
DOWNLOAD NOW »
Unter maschinellem Lernen versteht man die kunstliche Generierung von Wissen aus Erfahrung. Das vorliegende Buch diskutiert Methoden aus den Bereichen Statistik, Mustererkennung etc. und versucht, die unterschiedlichen Ansatze zu kombinieren, um moglichst effiziente Losungen zu finden."

Machine Learning mit Python

Das Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning
Author: Sebastian Raschka
Publisher: MITP-Verlags GmbH & Co. KG
ISBN: 3958454240
Category: Computers
Page: 424
View: 4224
DOWNLOAD NOW »


Data mining

praktische Werkzeuge und Techniken für das maschinelle Lernen
Author: Ian H. Witten,Eibe Frank
Publisher: N.A
ISBN: 9783446215337
Category:
Page: 386
View: 8770
DOWNLOAD NOW »


Statistik-Workshop für Programmierer


Author: Allen B. Downey
Publisher: O'Reilly Germany
ISBN: 3868993436
Category: Computers
Page: 160
View: 3201
DOWNLOAD NOW »
Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Die Bullet-Journal-Methode

Verstehe deine Vergangenheit, ordne deine Gegenwart, gestalte deine Zukunft
Author: Ryder Carroll
Publisher: Rowohlt Verlag GmbH
ISBN: 3644403228
Category: Self-Help
Page: 352
View: 1240
DOWNLOAD NOW »
Der Erfinder der bahnbrechenden Bullet-Journal-Methode Ryder Carroll zeigt in diesem Buch, wie Sie endlich zum Pilot Ihres Lebens werden und nicht länger Passagier bleiben. Seine Methode hilft mit einer strukturierteren Lebensweise achtsamer und konzentrierter zu werden. Inzwischen lassen sich Millionen Menschen von ihm inspirieren. In diesem Buch erklärt er seine Philosophie und zeigt, wie Sie Klarheit ins Gedankenchaos bringen, wie Sie Ihre täglichen Routinen entwickeln und vage Vorhaben in erreichbare Ziele verwandeln. Mit nur einem Stift und einem Notizblock und Carrolls revolutionärer Technik werden Sie produktiver, fokussierter und lernen, was wirklich zählt - bei der Arbeit und im Privaten.

Die Macht der Gewohnheit: Warum wir tun, was wir tun


Author: Charles Duhigg
Publisher: ebook Berlin Verlag
ISBN: 3827070740
Category: History
Page: 416
View: 5278
DOWNLOAD NOW »
Seit kurzem versuchen Hirnforscher, Verhaltenspsychologen und Soziologen gemeinsam neue Antworten auf eine uralte Frage zu finden: Warum tun wir eigentlich, was wir tun? Was genau prägt unsere Gewohnheiten? Anhand zahlreicher Beispiele aus der Forschung wie dem Alltag erzählt Charles Duhigg von der Macht der Routine und kommt dem Mechanismus, aber auch den dunklen Seiten der Gewohnheit auf die Spur. Er erklärt, warum einige Menschen es schaffen, über Nacht mit dem Rauchen aufzuhören (und andere nicht), weshalb das Geheimnis sportlicher Höchstleistung in antrainierten Automatismen liegt und wie sich die Anonymen Alkoholiker die Macht der Gewohnheit zunutze machen. Nicht zuletzt schildert er, wie Konzerne Millionen ausgeben, um unsere Angewohnheiten für ihre Zwecke zu manipulieren. Am Ende wird eines klar: Die Macht von Gewohnheiten prägt unser Leben weit mehr, als wir es ahnen.

Routineaufgaben mit Python automatisieren

Praktische Programmierlösungen für Einsteiger
Author: Al Sweigart
Publisher: dpunkt.verlag
ISBN: 3864919932
Category: Computers
Page: 576
View: 5680
DOWNLOAD NOW »
Wenn Sie jemals Stunden damit verbracht haben, Dateien umzubenennen oder Hunderte von Tabelleneinträgen zu aktualisieren, dann wissen Sie, wie stumpfsinnig manche Tätigkeiten sein können. Wie wäre es, den Computer dazu zu bringen, diese Arbeiten zu übernehmen? In diesem Buch lernen Sie, wie Sie mit Python Aufgaben in Sekundenschnelle erledigen können, die sonst viel Zeit in Anspruch nehmen würden. Programmiererfahrung brauchen Sie dazu nicht: Wenn Sie einmal die Grundlagen gemeistert haben, werden Sie Python-Programme schreiben, die automatisch alle möglichen praktischen Aufgaben für Sie abarbeiten: • eine oder eine Vielzahl von Dateien nach Texten durchsuchen • Dateien und Ordner erzeugen, aktualisieren, verschieben und umbenennen • das Web durchsuchen und Inhalte herunterladen • Excel-Dateien aktualisieren und formatieren • PDF-Dateien teilen, zusammenfügen, mit Wasserzeichen versehen und verschlüsseln • Erinnerungsmails und Textnachrichten verschicken • Online-Formulare ausfüllen Schritt-für-Schritt-Anleitungen führen Sie durch jedes Programm und Übungsaufgaben am Ende jedes Kapitels fordern Sie dazu auf, die Programme zu verbessern und Ihre Fähigkeiten auf ähnliche Problemstellungen zu richten. Verschwenden Sie nicht Ihre Zeit mit Aufgaben, die auch ein gut dressierter Affe erledigen könnte. Bringen Sie Ihren Computer dazu, die langweilige Arbeit zu machen!

Introduction to Machine Learning with Applications in Information Security


Author: Mark Stamp
Publisher: CRC Press
ISBN: 1351818066
Category: Business & Economics
Page: 346
View: 5094
DOWNLOAD NOW »
Introduction to Machine Learning with Applications in Information Security provides a class-tested introduction to a wide variety of machine learning algorithms, reinforced through realistic applications. The book is accessible and doesn’t prove theorems, or otherwise dwell on mathematical theory. The goal is to present topics at an intuitive level, with just enough detail to clarify the underlying concepts. The book covers core machine learning topics in-depth, including Hidden Markov Models, Principal Component Analysis, Support Vector Machines, and Clustering. It also includes coverage of Nearest Neighbors, Neural Networks, Boosting and AdaBoost, Random Forests, Linear Discriminant Analysis, Vector Quantization, Naive Bayes, Regression Analysis, Conditional Random Fields, and Data Analysis. Most of the examples in the book are drawn from the field of information security, with many of the machine learning applications specifically focused on malware. The applications presented are designed to demystify machine learning techniques by providing straightforward scenarios. Many of the exercises in this book require some programming, and basic computing concepts are assumed in a few of the application sections. However, anyone with a modest amount of programming experience should have no trouble with this aspect of the book. Instructor resources, including PowerPoint slides, lecture videos, and other relevant material are provided on an accompanying website: http://www.cs.sjsu.edu/~stamp/ML/. For the reader’s benefit, the figures in the book are also available in electronic form, and in color. About the Author Mark Stamp has been a Professor of Computer Science at San Jose State University since 2002. Prior to that, he worked at the National Security Agency (NSA) for seven years, and a Silicon Valley startup company for two years. He received his Ph.D. from Texas Tech University in 1992. His love affair with machine learning began in the early 1990s, when he was working at the NSA, and continues today at SJSU, where he has supervised vast numbers of master’s student projects, most of which involve a combination of information security and machine learning.

Neuronale Netze selbst programmieren

Ein verständlicher Einstieg mit Python
Author: Tariq Rashid
Publisher: O'Reilly
ISBN: 3960101031
Category: Computers
Page: 232
View: 2802
DOWNLOAD NOW »
Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Sie sind Grundlage vieler Anwendungen im Alltag wie beispielsweise Spracherkennung, Gesichtserkennung auf Fotos oder die Umwandlung von Sprache in Text. Dennoch verstehen nur wenige, wie neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie neuronale Netze arbeiten: - Zunächst lernen Sie die mathematischen Konzepte kennen, die den neuronalen Netzen zugrunde liegen. Dafür brauchen Sie keine tieferen Mathematikkenntnisse, denn alle mathematischen Ideen werden behutsam und mit vielen Illustrationen und Beispielen erläutert. Eine Kurzeinführung in die Analysis unterstützt Sie dabei. - Dann geht es in die Praxis: Nach einer Einführung in die populäre und leicht zu lernende Programmiersprache Python bauen Sie allmählich Ihr eigenes neuronales Netz mit Python auf. Sie bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. - Im nächsten Schritt tunen Sie die Leistung Ihres neuronalen Netzes so weit, dass es eine Zahlenerkennung von 98 % erreicht – nur mit einfachen Ideen und simplem Code. Sie testen das Netz mit Ihrer eigenen Handschrift und werfen noch einen Blick in das mysteriöse Innere eines neuronalen Netzes. - Zum Schluss lassen Sie das neuronale Netz auf einem Raspberry Pi Zero laufen. Tariq Rashid erklärt diese schwierige Materie außergewöhnlich klar und verständlich, dadurch werden neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

Die Berechnung der Zukunft

Warum die meisten Prognosen falsch sind und manche trotzdem zutreffen - Der New York Times Bestseller
Author: Nate Silver
Publisher: Heyne Verlag
ISBN: 3641112702
Category: Business & Economics
Page: 656
View: 9182
DOWNLOAD NOW »
Zuverlässige Vorhersagen sind doch möglich! Nate Silver ist der heimliche Gewinner der amerikanischen Präsidentschaftswahlen 2012: ein begnadeter Statistiker, als »Prognose-Popstar« und »Wundernerd« weltberühmt geworden. Er hat die Wahlergebnisse aller 50 amerikanischen Bundesstaaten absolut exakt vorausgesagt – doch damit nicht genug: Jetzt zeigt Nate Silver, wie seine Prognosen in Zukunft Terroranschläge, Umweltkatastrophen und Finanzkrisen verhindern sollen. Gelingt ihm die Abschaffung des Zufalls? Warum werden Wettervorhersagen immer besser, während die Terrorattacken vom 11.09.2001 niemand kommen sah? Warum erkennen Ökonomen eine globale Finanzkrise nicht einmal dann, wenn diese bereits begonnen hat? Das Problem ist nicht der Mangel an Informationen, sondern dass wir die verfügbaren Daten nicht richtig deuten. Zuverlässige Prognosen aber würden uns helfen, Zufälle und Ungewissheiten abzuwehren und unser Schicksal selbst zu bestimmen. Nate Silver zeigt, dass und wie das geht. Erstmals wendet er seine Wahrscheinlichkeitsrechnung nicht nur auf Wahlprognosen an, sondern auf die großen Probleme unserer Zeit: die Finanzmärkte, Ratingagenturen, Epidemien, Erdbeben, den Klimawandel, den Terrorismus. In all diesen Fällen gibt es zahlreiche Prognosen von Experten, die er überprüft – und erklärt, warum sie meist falsch sind. Gleichzeitig schildert er, wie es gelingen kann, im Rauschen der Daten die wesentlichen Informationen herauszufiltern. Ein unterhaltsamer und spannender Augenöffner!

Lean Startup

Schnell, risikolos und erfolgreich Unternehmen gründen
Author: Eric Ries
Publisher: Redline Wirtschaft
ISBN: 3864146712
Category: Business & Economics
Page: 200
View: 3257
DOWNLOAD NOW »
Der Weg zum eigenen Unternehmen ist nie ohne Risiko. Und bis die Firma sich auf dem Markt etabliert hat, dauert es. Wer doch scheitert, verliert in der Regel viel Geld. Genau hier setzt das Konzept von Eric Ries an. Lean Startup heißt seine Methode. Sie ist schnell, ressourcenfreundlich und radikal erfolgsorientiert. Anhand von durchgespielten Szenarien kann man von vornherein die Erfolgsaussichten von Ideen, Produkten und Märkten bestimmen. Und auch während der Gründungphase wird der Stand der Dinge ständig überprüft. Machen, messen, lernen – so funktioniert der permanente Evaluationsprozess. Das spart enorm Zeit, Geld und Ressourcen und bietet die Möglichkeit, spontan den Kurs zu korrigieren. Das Lean-Startup-Tool hat sich schon zigtausenfach in der Praxis bewährt und setzt sich auch in Deutschland immer stärker durch.

Machine Learning mit Python und Scikit-Learn und TensorFlow

Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning
Author: Sebastian Raschka,Vahid Mirjalili
Publisher: MITP-Verlags GmbH & Co. KG
ISBN: 3958457355
Category: Computers
Page: 584
View: 1545
DOWNLOAD NOW »
Datenanalyse mit ausgereiften statistischen Modellen des Machine Learnings Anwendung der wichtigsten Algorithmen und Python-Bibliotheken wie NumPy, SciPy, Scikit-learn, TensorFlow, Matplotlib, Pandas und Kera Best Practices zur Optimierung Ihrer Machine-Learning-Algorithmen Machine Learning und Predictive Analytics verändern die Arbeitsweise von Unternehmen grundlegend. Die Fähigkeit, in komplexen Daten Trends und Muster zu erkennen, ist heutzutage für den langfristigen geschäftlichen Erfolg ausschlaggebend und entwickelt sich zu einer der entscheidenden Wachstumsstrategien. Die zweite Auflage dieses Buchs berücksichtigt die jüngsten Entwicklungen und Technologien, die für Machine Learning, Neuronale Netze und Deep Learning wichtig sind. Dies betrifft insbesondere die neuesten Open-Source-Bibliotheken wie Scikit-learn, Keras und TensorFlow. Python zählt zu den führenden Programmiersprachen in den Bereichen Machine Learning, Data Science und Deep Learning und ist besonders gut dazu geeignet, grundlegende Erkenntnisse aus Ihren Daten zu gewinnen sowie ausgefeilte Algorithmen und statistische Modelle auszuarbeiten, die neue Einsichten liefern und wichtige Fragen beantworten. Die Autoren erläutern umfassend den Einsatz von Machine-Learning- und Deep-Learning-Algorithmen und wenden diese anhand zahlreicher Beispiele praktisch an. Dafür behandeln sie in diesem Buch ein breites Spektrum leistungsfähiger Python-Bibliotheken wie Scikit-learn, Keras und TensorFlow. Sie lernen detailliert, wie Sie Python für maschinelle Lernverfahren einsetzen und dabei eine Vielzahl von statistischen Modellen verwenden.

Sprint

Wie man in nur fünf Tagen neue Ideen testet und Probleme löst
Author: Jake Knapp,Braden Kowitz,John Zeratsky
Publisher: Redline Wirtschaft
ISBN: 3864149061
Category: Business & Economics
Page: 256
View: 1145
DOWNLOAD NOW »
Unternehmer, Gründer und Teams stehen täglich vor der Herausforderung: Womit soll man zuerst anfangen, worauf sich am meisten fokussieren? Und wie viele Diskussionen und Meetings sind nötig, bevor man ganz sicher die garantiert richtige Lösung hat? Die Folge ist, dass allzu oft das Projekt auf der Stelle tritt und man überhaupt nicht vorwärtskommt. Dafür gibt es eine geniale Lösung: Sprint. Die ist ein einzigartiger, innovativer und narrensicherer Prozess, mit dem sich die härtesten Probleme in nur fünf Tagen lösen lassen – von Montag bis Freitag. Der Entwickler Jake Knapp entwarf diesen Prozess bei und für Google, wo er seither in allen Bereichen genutzt wird. Zusammen mit John Zeratsky und Braden Kowitz hat er darüber hinaus bereits mehr als 100 Sprints in Firmen aus unterschiedlichen Bereichen durchgeführt. Der Sprint-Prozess bietet praktische Hilfe für Unternehmen aller Größen, vom kleinen Start-up bis hin zum Fortune-100-Unternehmen. Die Methode ist auch für alle anderen bewährt, die vor einem großen Problem stehen, schnell eine Idee testen oder einfach eine Möglichkeit schnell ergreifen wollen.

Machine Learning

An Algorithmic Perspective, Second Edition
Author: Stephen Marsland
Publisher: CRC Press
ISBN: 1498759785
Category: Computers
Page: 457
View: 3863
DOWNLOAD NOW »
A Proven, Hands-On Approach for Students without a Strong Statistical Foundation Since the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning algorithms. Unfortunately, computer science students without a strong statistical background often find it hard to get started in this area. Remedying this deficiency, Machine Learning: An Algorithmic Perspective, Second Edition helps students understand the algorithms of machine learning. It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation. New to the Second Edition Two new chapters on deep belief networks and Gaussian processes Reorganization of the chapters to make a more natural flow of content Revision of the support vector machine material, including a simple implementation for experiments New material on random forests, the perceptron convergence theorem, accuracy methods, and conjugate gradient optimization for the multi-layer perceptron Additional discussions of the Kalman and particle filters Improved code, including better use of naming conventions in Python Suitable for both an introductory one-semester course and more advanced courses, the text strongly encourages students to practice with the code. Each chapter includes detailed examples along with further reading and problems. All of the code used to create the examples is available on the author’s website.

Lifelong Machine Learning

Second Edition
Author: Zhiyuan Chen,Bing Liu
Publisher: Morgan & Claypool Publishers
ISBN: 168173303X
Category: Computers
Page: 207
View: 1064
DOWNLOAD NOW »
Lifelong Machine Learning, Second Edition is an introduction to an advanced machine learning paradigm that continuously learns by accumulating past knowledge that it then uses in future learning and problem solving. In contrast, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model that is then used in its intended application. It makes no attempt to retain the learned knowledge and use it in subsequent learning. Unlike this isolated system, humans learn effectively with only a few examples precisely because our learning is very knowledge-driven: the knowledge learned in the past helps us learn new things with little data or effort. Lifelong learning aims to emulate this capability, because without it, an AI system cannot be considered truly intelligent. Research in lifelong learning has developed significantly in the relatively short time since the first edition of this book was published. The purpose of this second edition is to expand the definition of lifelong learning, update the content of several chapters, and add a new chapter about continual learning in deep neural networks—which has been actively researched over the past two or three years. A few chapters have also been reorganized to make each of them more coherent for the reader. Moreover, the authors want to propose a unified framework for the research area. Currently, there are several research topics in machine learning that are closely related to lifelong learning—most notably, multi-task learning, transfer learning, and meta-learning—because they also employ the idea of knowledge sharing and transfer. This book brings all these topics under one roof and discusses their similarities and differences. Its goal is to introduce this emerging machine learning paradigm and present a comprehensive survey and review of the important research results and latest ideas in the area. This book is thus suitable for students, researchers, and practitioners who are interested in machine learning, data mining, natural language processing, or pattern recognition. Lecturers can readily use the book for courses in any of these related fields.

A First Course in Artificial Intelligence, 1e


Author: Deepak Khemani
Publisher: McGraw-Hill Education
ISBN: 9383286784
Category:
Page: N.A
View: 8245
DOWNLOAD NOW »
As the title says, A First Course in Artificial Intelligence is aptly suited for both undergraduate and postgraduate courses involving Artificial Intelligence. The book explores from scratch the algorithms and representations needed for building intelligent systems. The textbook follows a bottom-up approach exploring the basic strategies - starting with search based methods & then moving on to knowledge based methods - needed for problem solving and focuses primarily on the intelligence part. The only background required to comprehend the book is familiarity with programming. Easy explanations for the concepts bolstered with illuminative illustrations make the book an essential reading for the budding artificial intelligence students, seasoned practitioners and researchers; all alike.

R in a Nutshell


Author: Joseph Adler
Publisher: O'Reilly Germany
ISBN: 3897216507
Category: Computers
Page: 768
View: 9050
DOWNLOAD NOW »
Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

Programmieren lernen mit Python


Author: Allen B. Downey
Publisher: O'Reilly Germany
ISBN: 3955618072
Category: Computers
Page: 320
View: 9173
DOWNLOAD NOW »
Python ist eine moderne, interpretierte, interaktive und objektorientierte Skriptsprache, vielseitig einsetzbar und sehr beliebt. Mit mathematischen Vorkenntnissen ist Python leicht erlernbar und daher die ideale Sprache für den Einstieg in die Welt des Programmierens. Das Buch führt Sie Schritt für Schritt durch die Sprache, beginnend mit grundlegenden Programmierkonzepten, über Funktionen, Syntax und Semantik, Rekursion und Datenstrukturen bis hin zum objektorientierten Design. Zur aktualisierten Auflage Diese Auflage behandelt Python 3, geht dabei aber auch auf Unterschiede zu Python 2 ein. Außerdem wurde das Buch um die Themen Unicode, List und Dictionary Comprehensions, den Mengen-Typ Set, die String-Format-Methode und print als Funktion ergänzt. Jenseits reiner Theorie Jedes Kapitel enthält passende Übungen und Fallstudien, kurze Verständnistests und kleinere Projekte, an denen Sie die neu erlernten Programmierkonzepte gleich ausprobieren und festigen können. Auf diese Weise können Sie das Gelernte direkt anwenden und die jeweiligen Programmierkonzepte nachvollziehen. Lernen Sie Debugging-Techniken kennen Am Ende jedes Kapitels finden Sie einen Abschnitt zum Thema Debugging, der Techniken zum Aufspüren und Vermeiden von Bugs sowie Warnungen vor entsprechenden Stolpersteinen in Python enthält.