An Introduction to Mathematical Statistics and Its Applications


Author: Richard J. Larsen,Morris L. Marx
Publisher: Pearson College Division
ISBN: 9780139223037
Category: Mathematics
Page: 790
View: 8065
DOWNLOAD NOW »
Using high-quality, real-world case studies and examples, this introduction to mathematical statistics shows how to use statistical methods and when to use them. This book can be used as a brief introduction to design of experiments. This successful, calculus-based book of probability and statistics, was one of the first to make real-world applications an integral part of motivating discussion. The number of problem sets has increased in all sections. Some sections include almost 50% new problems, while the most popular case studies remain. For anyone needing to develop proficiency with Mathematical Statistics.

Student Solutions Manual

An Introduction to Mathematical Statistics and Its Applications
Author: Richard J. Larsen,Morris L. Marx
Publisher: Prentice Hall
ISBN: N.A
Category: Education
Page: 121
View: 5193
DOWNLOAD NOW »


An Introduction to Mathematical Statistics and Its Applications


Author: Richard J. Larsen,Morris L. Marx
Publisher: Prentice Hall
ISBN: 9780134871745
Category: Mathematics
Page: 630
View: 9243
DOWNLOAD NOW »
This volume allows those with an established mathematics background to pursue a more rigorous treatment of probability and statistics.

Grundbegriffe der Wahrscheinlichkeitsrechnung


Author: A. Kolomogoroff
Publisher: Springer-Verlag
ISBN: 3642498884
Category: Mathematics
Page: 62
View: 5742
DOWNLOAD NOW »
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Introduction to Mathematical Statistics


Author: Richard J. Larsen,3rd Edition Larsen and Marx,Morris L. Marx,Cram101 Textbook Reviews
Publisher: Academic Internet Pub Incorporated
ISBN: 9781428814431
Category: Mathematics
Page: 92
View: 1466
DOWNLOAD NOW »
Never HIGHLIGHT a Book Again! Virtually all of the testable terms, concepts, persons, places, and events from the textbook are included. Cram101 Just the FACTS101 studyguides give all of the outlines, highlights, notes, and quizzes for your textbook with optional online comprehensive practice tests. Only Cram101 is Textbook Specific. Accompanys: 9780139223037 .

An Introduction to Probability Theory and Its Applications


Author: William Feller
Publisher: N.A
ISBN: N.A
Category: Probabilities
Page: 509
View: 3040
DOWNLOAD NOW »
Problems after each chapter

Student's Solutions Manual for an Introduction to Mathematical Statistics and Its Applications


Author: Richard J. Larsen,Morris L. Marx
Publisher: Pearson
ISBN: 9780134114262
Category:
Page: 144
View: 3937
DOWNLOAD NOW »
This manual contains completely worked-out solutions for all the odd-numbered exercises in the text.

An Introduction to Statistical Inference and Its Applications with R


Author: Michael W. Trosset
Publisher: CRC Press
ISBN: 9781584889489
Category: Mathematics
Page: 496
View: 9697
DOWNLOAD NOW »
Emphasizing concepts rather than recipes, An Introduction to Statistical Inference and Its Applications with R provides a clear exposition of the methods of statistical inference for students who are comfortable with mathematical notation. Numerous examples, case studies, and exercises are included. R is used to simplify computation, create figures, and draw pseudorandom samples—not to perform entire analyses. After discussing the importance of chance in experimentation, the text develops basic tools of probability. The plug-in principle then provides a transition from populations to samples, motivating a variety of summary statistics and diagnostic techniques. The heart of the text is a careful exposition of point estimation, hypothesis testing, and confidence intervals. The author then explains procedures for 1- and 2-sample location problems, analysis of variance, goodness-of-fit, and correlation and regression. He concludes by discussing the role of simulation in modern statistical inference. Focusing on the assumptions that underlie popular statistical methods, this textbook explains how and why these methods are used to analyze experimental data.

AN INTRODUCTION TO PROBABILITY THEORY AND ITS APPLICATIONS, 2ND ED


Author: Willliam Feller
Publisher: John Wiley & Sons
ISBN: 9788126518067
Category:
Page: 700
View: 5767
DOWNLOAD NOW »
· The Exponential and the Uniform Densities· Special Densities. Randomization· Densities in Higher Dimensions. Normal Densities and Processes· Probability Measures and Spaces· Probability Distributions in Rr· A Survey of Some Important Distributions and Processes· Laws of Large Numbers. Applications in Analysis· The Basic Limit Theorems· Infinitely Divisible Distributions and Semi-Groups· Markov Processes and Semi-Groups· Renewal Theory· Random Walks in R1· Laplace Transforms. Tauberian Theorems. Resolvents· Applications of Laplace Transforms· Characteristic Functions· Expansions Related to the Central Limit Theorem,· Infinitely Divisible Distributions· Applications of Fourier Methods to Random Walks· Harmonic Analysis

An Introduction to Probability Theory and Its Applications


Author: William Feller
Publisher: John Wiley & Sons
ISBN: N.A
Category: Mathematics
Page: 528
View: 2415
DOWNLOAD NOW »
The nature of probability theory. The sample space. Elements of combinatorial analysis. Fluctuations in coin tossing and random walks. Combination of events. Conditional probability, stochastic independence. The binomial and the Poisson distributions. The Normal approximation to the binomial distribution. Unlimited sequences of Bernoulli trials. Random variables, expectation. Laws of large numbers. Integral valued variables, generating functions. Compound distributions. Branching processes. Recurrent events. Renewal theory. Random walk and ruin problems. Markov chains. Algebraic treatment of finite Markov chains. The simplest time-dependent stochastic processes. Answer to problems. Index.

Einführung in die Statistik der Finanzmärkte


Author: Jürgen Franke,Wolfgang Karl Härdle,Christian Matthias Hafner
Publisher: Springer-Verlag
ISBN: 3642170498
Category: Business & Economics
Page: 428
View: 8598
DOWNLOAD NOW »


Studyguide for an Introduction to Mathematical Statistics and Its Applications by Larsen, Richard J., ISBN 9780321831460


Author: Cram101 Textbook Reviews
Publisher: Cram101
ISBN: 9781497090231
Category: Education
Page: 138
View: 3678
DOWNLOAD NOW »
Never HIGHLIGHT a Book Again! Includes all testable terms, concepts, persons, places, and events. Cram101 Just the FACTS101 studyguides gives all of the outlines, highlights, and quizzes for your textbook with optional online comprehensive practice tests. Only Cram101 is Textbook Specific. Accompanies: 9780321831460. This item is printed on demand.

An introduction to probability and its applications


Author: Richard J. Larsen,Morris L. Marx
Publisher: Prentice Hall
ISBN: N.A
Category: Business & Economics
Page: 404
View: 5727
DOWNLOAD NOW »
Drawing heavily on real-world examples and case studies, this volume offers a calculus-based, non-measure theoretic, problem-solving-oriented introduction to probability.

Im Traum kannst du nicht lügen

Roman
Author: Malin Persson Giolito
Publisher: BASTEI LÜBBE
ISBN: 3732549860
Category: Fiction
Page: 461
View: 3510
DOWNLOAD NOW »
Stockholm: Nach einem Blutbad an einem Gymnasium steht die Schülerin Maja Norberg als Schuldige vor Gericht. Ihre Freunde Dennis, Amanda und Sebastian, der Lehrer Christer, alle erschossen, von Maja. Wie konnte es dazu kommen, dass dieses einstmals so beliebte Mädchen zur Mörderin und zur meist gehassten Person Schwedens wurde? Und ist sie überhaupt schuldig? Aus Majas Sicht wird in diesem faszinierenden Roman die Vorgeschichte des Verbrechens erzählt. Eine aufwühlende Lektüre. Im Traum kannst du nicht lügen wurde 2017 mit dem namhaften Glass Key Award (Skandinavischer Krimipreis) ausgezeichnet - der prestigeträchtigsten Auszeichnung für nordische Kriminalromane. Die Autorin Malin Persson Giolito reiht sich damit in die Liste der erfolgreichsten und berühmtesten Schriftsteller Skandinaviens ein. Ebenfalls Preisträger waren u.a.: Henning Mankell, Stieg Larsson, Jussi Adler-Olsen, Jo Nesbø, Arnaldur Indridason, Leif G. W. Persson

Introduction to Probability with Statistical Applications


Author: Géza Schay
Publisher: Birkhäuser
ISBN: 3319306200
Category: Mathematics
Page: 385
View: 2530
DOWNLOAD NOW »
Now in its second edition, this textbook serves as an introduction to probability and statistics for non-mathematics majors who do not need the exhaustive detail and mathematical depth provided in more comprehensive treatments of the subject. The presentation covers the mathematical laws of random phenomena, including discrete and continuous random variables, expectation and variance, and common probability distributions such as the binomial, Poisson, and normal distributions. More classical examples such as Montmort's problem, the ballot problem, and Bertrand’s paradox are now included, along with applications such as the Maxwell-Boltzmann and Bose-Einstein distributions in physics. Key features in new edition: * 35 new exercises * Expanded section on the algebra of sets * Expanded chapters on probabilities to include more classical examples * New section on regression * Online instructors' manual containing solutions to all exercises“/p> Advanced undergraduate and graduate students in computer science, engineering, and other natural and social sciences with only a basic background in calculus will benefit from this introductory text balancing theory with applications. Review of the first edition: This textbook is a classical and well-written introduction to probability theory and statistics. ... the book is written ‘for an audience such as computer science students, whose mathematical background is not very strong and who do not need the detail and mathematical depth of similar books written for mathematics or statistics majors.’ ... Each new concept is clearly explained and is followed by many detailed examples. ... numerous examples of calculations are given and proofs are well-detailed." (Sophie Lemaire, Mathematical Reviews, Issue 2008 m)

An Introduction to Kolmogorov Complexity and Its Applications


Author: Ming Li,Paul Vitanyi
Publisher: Springer Science & Business Media
ISBN: 1475738609
Category: Computers
Page: 550
View: 4992
DOWNLOAD NOW »
With this book, the authors are trying to present in a unified treatment an introduction to the central ideas and their applications of the Kolmogorov Complexity, the theory dealing with the quantity of information in individual objects. This book is appropriate for either a one- or two-semester introductory course in departments of computer science, mathematics, physics, probability theory and statistics, artificial intelligence, and philosophy. Although the mathematical theory of Kolmogorov complexity contains sophisticated mathematics, the amount of math one needs to know to apply the notions in widely divergent areas, is very little. The authors' purpose is to develop the theory in detail and outline a wide range of illustrative applications. This book is an attempt to grasp the mass of fragmented knowledge of this fascinating theory. Chapter 1 is a compilation of material on the diverse notations and disciplines we draw upon in order to make the book self-contained. The mathematical theory of Kolmogorov complexity is treated in chapters 2-4; the applications are treated in chapters 4-8.

Mathematical Statistics with Applications in R


Author: Kandethody M. Ramachandran,Chris P. Tsokos
Publisher: Elsevier
ISBN: 012417132X
Category: Mathematics
Page: 826
View: 4744
DOWNLOAD NOW »
Mathematical Statistics with Applications in R, Second Edition, offers a modern calculus-based theoretical introduction to mathematical statistics and applications. The book covers many modern statistical computational and simulation concepts that are not covered in other texts, such as the Jackknife, bootstrap methods, the EM algorithms, and Markov chain Monte Carlo (MCMC) methods such as the Metropolis algorithm, Metropolis-Hastings algorithm and the Gibbs sampler. By combining the discussion on the theory of statistics with a wealth of real-world applications, the book helps students to approach statistical problem solving in a logical manner. This book provides a step-by-step procedure to solve real problems, making the topic more accessible. It includes goodness of fit methods to identify the probability distribution that characterizes the probabilistic behavior or a given set of data. Exercises as well as practical, real-world chapter projects are included, and each chapter has an optional section on using Minitab, SPSS and SAS commands. The text also boasts a wide array of coverage of ANOVA, nonparametric, MCMC, Bayesian and empirical methods; solutions to selected problems; data sets; and an image bank for students. Advanced undergraduate and graduate students taking a one or two semester mathematical statistics course will find this book extremely useful in their studies. Step-by-step procedure to solve real problems, making the topic more accessible Exercises blend theory and modern applications Practical, real-world chapter projects Provides an optional section in each chapter on using Minitab, SPSS and SAS commands Wide array of coverage of ANOVA, Nonparametric, MCMC, Bayesian and empirical methods

Operations Research

Einführung
Author: Frederick S. Hillier,Gerald J. Liebermann
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3486792083
Category: Business & Economics
Page: 868
View: 8868
DOWNLOAD NOW »
Aus dem Inhalt: Was ist Operations Research? Überblick über die Modellierungsgrundsätze des Operations Research. Einführung in die lineare Programmierung. Die Lösung linearer Programmierungsprobleme: Das Simplexverfahren. Stochastische Prozesse. Warteschlangentheorie. Lagerhaltungstheorie. Prognoseverfahren. Markov-Entscheidungsprozesse. Reliabilität. Entscheidungstheorie. Die Theorie des Simplexverfahrens Qualitätstheorie und Sensitivitätsanalyse Spezialfälle linearer Programmierungsprobleme. Die Formulierung linearer Programmierungsmodelle und Goal-Programmierung. Weitere Algorithmen der linearen Programmierung. Netzwerkanalyse einschließlich PERT-CPM. Dynamische Optimierung. Spieltheorie. Ganzzahlige Programmierung. Nichtlineare Programmierung Simulation. Anhang. Lösungen für ausgewählte Übungsaufgaben.

Statistik-Workshop für Programmierer


Author: Allen B. Downey
Publisher: O'Reilly Germany
ISBN: 3868993436
Category: Computers
Page: 160
View: 1951
DOWNLOAD NOW »
Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.