## An introduction to probability theory and mathematical statistics

**Author**: V. K. Rohatgi

**Publisher:**John Wiley & Sons Inc

**ISBN:**N.A

**Category:**Mathematics

**Page:**684

**View:**7863

**DOWNLOAD NOW »**

Probability; Random variables and their probability distributions; Moments and generating functions; Random vectors; Some special distributions; Limit theorems; Sample moments and their distributions; The theory of point estimation; Neyman-Pearson theory of testing of hypotheses; Some further results on hypotheses testing; Confidence estimation; The general linear hypothesis; Nonparametric statistical inference; Sequential statistical inference.

## An Introduction to Probability and Statistics

**Author**: Vijay K. Rohatgi,A.K. Md. Ehsanes Saleh

**Publisher:**John Wiley & Sons

**ISBN:**1118799682

**Category:**Mathematics

**Page:**728

**View:**8147

**DOWNLOAD NOW »**

A well-balanced introduction to probability theory and mathematical statistics Featuring updated material, An Introduction to Probability and Statistics, Third Edition remains a solid overview to probability theory and mathematical statistics. Divided intothree parts, the Third Edition begins by presenting the fundamentals and foundationsof probability. The second part addresses statistical inference, and the remainingchapters focus on special topics. An Introduction to Probability and Statistics, Third Edition includes: A new section on regression analysis to include multiple regression, logistic regression, and Poisson regression A reorganized chapter on large sample theory to emphasize the growing role of asymptotic statistics Additional topical coverage on bootstrapping, estimation procedures, and resampling Discussions on invariance, ancillary statistics, conjugate prior distributions, and invariant confidence intervals Over 550 problems and answers to most problems, as well as 350 worked out examples and 200 remarks Numerous figures to further illustrate examples and proofs throughout An Introduction to Probability and Statistics, Third Edition is an ideal reference and resource for scientists and engineers in the fields of statistics, mathematics, physics, industrial management, and engineering. The book is also an excellent text for upper-undergraduate and graduate-level students majoring in probability and statistics.

## An Introduction to Probability Theory and Its Applications

**Author**: William Feller

**Publisher:**John Wiley & Sons

**ISBN:**N.A

**Category:**Mathematics

**Page:**528

**View:**3504

**DOWNLOAD NOW »**

The nature of probability theory. The sample space. Elements of combinatorial analysis. Fluctuations in coin tossing and random walks. Combination of events. Conditional probability, stochastic independence. The binomial and the Poisson distributions. The Normal approximation to the binomial distribution. Unlimited sequences of Bernoulli trials. Random variables, expectation. Laws of large numbers. Integral valued variables, generating functions. Compound distributions. Branching processes. Recurrent events. Renewal theory. Random walk and ruin problems. Markov chains. Algebraic treatment of finite Markov chains. The simplest time-dependent stochastic processes. Answer to problems. Index.

## Probability and Mathematical Statistics

*An Introduction*

**Author**: Eugene Lukacs

**Publisher:**Academic Press

**ISBN:**1483269205

**Category:**Mathematics

**Page:**254

**View:**9508

**DOWNLOAD NOW »**

Probability and Mathematical Statistics: An Introduction provides a well-balanced first introduction to probability theory and mathematical statistics. This book is organized into two sections encompassing nine chapters. The first part deals with the concept and elementary properties of probability space, and random variables and their probability distributions. This part also considers the principles of limit theorems, the distribution of random variables, and the so-called student’s distribution. The second part explores pertinent topics in mathematical statistics, including the concept of sampling, estimation, and hypotheses testing. This book is intended primarily for undergraduate statistics students.

## An introduction to probability theory and its applications

**Author**: William Feller

**Publisher:**John Wiley & Sons Inc

**ISBN:**N.A

**Category:**Business & Economics

**Page:**704

**View:**9224

**DOWNLOAD NOW »**

Major changes in this edition include the substitution of probabilistic arguments for combinatorial artifices, and the addition of new sections on branching processes, Markov chains, and the De Moivre-Laplace theorem.

## An Introduction to Probability Theory

**Author**: K. Itô

**Publisher:**Cambridge University Press

**ISBN:**9780521269605

**Category:**Mathematics

**Page:**213

**View:**8361

**DOWNLOAD NOW »**

One of the most distinguished probability theorists in the world rigorously explains the basic probabilistic concepts while fostering an intuitive understanding of random phenomena.

## Probability Theory

*A First Course in Probability Theory and Statistics*

**Author**: Werner Linde

**Publisher:**Walter de Gruyter GmbH & Co KG

**ISBN:**3110466198

**Category:**Mathematics

**Page:**409

**View:**1008

**DOWNLOAD NOW »**

This book is intended as an introduction to Probability Theory and Mathematical Statistics for students in mathematics, the physical sciences, engineering, and related fields. It is based on the author’s 25 years of experience teaching probability and is squarely aimed at helping students overcome common difficulties in learning the subject. The focus of the book is an explanation of the theory, mainly by the use of many examples. Whenever possible, proofs of stated results are provided. All sections conclude with a short list of problems. The book also includes several optional sections on more advanced topics. This textbook would be ideal for use in a first course in Probability Theory. Contents: Probabilities Conditional Probabilities and Independence Random Variables and Their Distribution Operations on Random Variables Expected Value, Variance, and Covariance Normally Distributed Random Vectors Limit Theorems Mathematical Statistics Appendix Bibliography Index

## Introduction to Probability with Statistical Applications

**Author**: Géza Schay

**Publisher:**Birkhäuser

**ISBN:**3319306200

**Category:**Mathematics

**Page:**385

**View:**6107

**DOWNLOAD NOW »**

Now in its second edition, this textbook serves as an introduction to probability and statistics for non-mathematics majors who do not need the exhaustive detail and mathematical depth provided in more comprehensive treatments of the subject. The presentation covers the mathematical laws of random phenomena, including discrete and continuous random variables, expectation and variance, and common probability distributions such as the binomial, Poisson, and normal distributions. More classical examples such as Montmort's problem, the ballot problem, and Bertrand’s paradox are now included, along with applications such as the Maxwell-Boltzmann and Bose-Einstein distributions in physics. Key features in new edition: * 35 new exercises * Expanded section on the algebra of sets * Expanded chapters on probabilities to include more classical examples * New section on regression * Online instructors' manual containing solutions to all exercises“/p> Advanced undergraduate and graduate students in computer science, engineering, and other natural and social sciences with only a basic background in calculus will benefit from this introductory text balancing theory with applications. Review of the first edition: This textbook is a classical and well-written introduction to probability theory and statistics. ... the book is written ‘for an audience such as computer science students, whose mathematical background is not very strong and who do not need the detail and mathematical depth of similar books written for mathematics or statistics majors.’ ... Each new concept is clearly explained and is followed by many detailed examples. ... numerous examples of calculations are given and proofs are well-detailed." (Sophie Lemaire, Mathematical Reviews, Issue 2008 m)

## Mathematical Statistics with Applications in R

**Author**: Kandethody M. Ramachandran,Chris P. Tsokos

**Publisher:**Elsevier

**ISBN:**012417132X

**Category:**Mathematics

**Page:**826

**View:**7354

**DOWNLOAD NOW »**

Mathematical Statistics with Applications in R, Second Edition, offers a modern calculus-based theoretical introduction to mathematical statistics and applications. The book covers many modern statistical computational and simulation concepts that are not covered in other texts, such as the Jackknife, bootstrap methods, the EM algorithms, and Markov chain Monte Carlo (MCMC) methods such as the Metropolis algorithm, Metropolis-Hastings algorithm and the Gibbs sampler. By combining the discussion on the theory of statistics with a wealth of real-world applications, the book helps students to approach statistical problem solving in a logical manner. This book provides a step-by-step procedure to solve real problems, making the topic more accessible. It includes goodness of fit methods to identify the probability distribution that characterizes the probabilistic behavior or a given set of data. Exercises as well as practical, real-world chapter projects are included, and each chapter has an optional section on using Minitab, SPSS and SAS commands. The text also boasts a wide array of coverage of ANOVA, nonparametric, MCMC, Bayesian and empirical methods; solutions to selected problems; data sets; and an image bank for students. Advanced undergraduate and graduate students taking a one or two semester mathematical statistics course will find this book extremely useful in their studies. Step-by-step procedure to solve real problems, making the topic more accessible Exercises blend theory and modern applications Practical, real-world chapter projects Provides an optional section in each chapter on using Minitab, SPSS and SAS commands Wide array of coverage of ANOVA, Nonparametric, MCMC, Bayesian and empirical methods

## An Introduction to Probability and Statistical Inference

**Author**: George G. Roussas

**Publisher:**Academic Press

**ISBN:**0128004371

**Category:**Mathematics

**Page:**624

**View:**6875

**DOWNLOAD NOW »**

An Introduction to Probability and Statistical Inference, Second Edition, guides you through probability models and statistical methods and helps you to think critically about various concepts. Written by award-winning author George Roussas, this book introduces readers with no prior knowledge in probability or statistics to a thinking process to help them obtain the best solution to a posed question or situation. It provides a plethora of examples for each topic discussed, giving the reader more experience in applying statistical methods to different situations. This text contains an enhanced number of exercises and graphical illustrations where appropriate to motivate the reader and demonstrate the applicability of probability and statistical inference in a great variety of human activities. Reorganized material is included in the statistical portion of the book to ensure continuity and enhance understanding. Each section includes relevant proofs where appropriate, followed by exercises with useful clues to their solutions. Furthermore, there are brief answers to even-numbered exercises at the back of the book and detailed solutions to all exercises are available to instructors in an Answers Manual. This text will appeal to advanced undergraduate and graduate students, as well as researchers and practitioners in engineering, business, social sciences or agriculture. Content, examples, an enhanced number of exercises, and graphical illustrations where appropriate to motivate the reader and demonstrate the applicability of probability and statistical inference in a great variety of human activities Reorganized material in the statistical portion of the book to ensure continuity and enhance understanding A relatively rigorous, yet accessible and always within the prescribed prerequisites, mathematical discussion of probability theory and statistical inference important to students in a broad variety of disciplines Relevant proofs where appropriate in each section, followed by exercises with useful clues to their solutions Brief answers to even-numbered exercises at the back of the book and detailed solutions to all exercises available to instructors in an Answers Manual

## Measure Theory and Probability Theory

**Author**: Krishna B. Athreya,Soumendra N. Lahiri

**Publisher:**Springer Science & Business Media

**ISBN:**038732903X

**Category:**Business & Economics

**Page:**618

**View:**8936

**DOWNLOAD NOW »**

This is a graduate level textbook on measure theory and probability theory. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. It is intended primarily for first year Ph.D. students in mathematics and statistics although mathematically advanced students from engineering and economics would also find the book useful. Prerequisites are kept to the minimal level of an understanding of basic real analysis concepts such as limits, continuity, differentiability, Riemann integration, and convergence of sequences and series. A review of this material is included in the appendix. The book starts with an informal introduction that provides some heuristics into the abstract concepts of measure and integration theory, which are then rigorously developed. The first part of the book can be used for a standard real analysis course for both mathematics and statistics Ph.D. students as it provides full coverage of topics such as the construction of Lebesgue-Stieltjes measures on real line and Euclidean spaces, the basic convergence theorems, L^p spaces, signed measures, Radon-Nikodym theorem, Lebesgue's decomposition theorem and the fundamental theorem of Lebesgue integration on R, product spaces and product measures, and Fubini-Tonelli theorems. It also provides an elementary introduction to Banach and Hilbert spaces, convolutions, Fourier series and Fourier and Plancherel transforms. Thus part I would be particularly useful for students in a typical Statistics Ph.D. program if a separate course on real analysis is not a standard requirement. Part II (chapters 6-13) provides full coverage of standard graduate level probability theory. It starts with Kolmogorov's probability model and Kolmogorov's existence theorem. It then treats thoroughly the laws of large numbers including renewal theory and ergodic theorems with applications and then weak convergence of probability distributions, characteristic functions, the Levy-Cramer continuity theorem and the central limit theorem as well as stable laws. It ends with conditional expectations and conditional probability, and an introduction to the theory of discrete time martingales. Part III (chapters 14-18) provides a modest coverage of discrete time Markov chains with countable and general state spaces, MCMC, continuous time discrete space jump Markov processes, Brownian motion, mixing sequences, bootstrap methods, and branching processes. It could be used for a topics/seminar course or as an introduction to stochastic processes. Krishna B. Athreya is a professor at the departments of mathematics and statistics and a Distinguished Professor in the College of Liberal Arts and Sciences at the Iowa State University. He has been a faculty member at University of Wisconsin, Madison; Indian Institute of Science, Bangalore; Cornell University; and has held visiting appointments in Scandinavia and Australia. He is a fellow of the Institute of Mathematical Statistics USA; a fellow of the Indian Academy of Sciences, Bangalore; an elected member of the International Statistical Institute; and serves on the editorial board of several journals in probability and statistics. Soumendra N. Lahiri is a professor at the department of statistics at the Iowa State University. He is a fellow of the Institute of Mathematical Statistics, a fellow of the American Statistical Association, and an elected member of the International Statistical Institute.

## An introduction to mathematical statistics

**Author**: F. Bijma,M. Jonker,A. van der Vaart

**Publisher:**Amsterdam University Press

**ISBN:**9048536111

**Category:**Mathematics

**Page:**N.A

**View:**5038

**DOWNLOAD NOW »**

Statistics is the science that focuses on drawing conclusions from data, by modeling and analyzing the data using probabilistic models. In An Introduction to Mathematical Statistics the authors describe key concepts from statistics and give a mathematical basis for important statistical methods. Much attention is paid to the sound application of those methods to data. The three main topics in statistics are estimators, tests, and confidence regions. The authors illustrate these in many examples, with a separate chapter on regression models, including linear regression and analysis of variance. They also discuss the optimality of estimators and tests, as well as the selection of the best-fitting model. Each chapter ends with a case study in which the described statistical methods are applied. This book assumes a basic knowledge of probability theory, calculus, and linear algebra.

## Probability Theory, Random Processes and Mathematical Statistics

**Author**: Y. Rozanov

**Publisher:**Springer Science & Business Media

**ISBN:**9401104492

**Category:**Mathematics

**Page:**259

**View:**4657

**DOWNLOAD NOW »**

Probability Theory, Theory of Random Processes and Mathematical Statistics are important areas of modern mathematics and its applications. They develop rigorous models for a proper treatment for various 'random' phenomena which we encounter in the real world. They provide us with numerous tools for an analysis, prediction and, ultimately, control of random phenomena. Statistics itself helps with choice of a proper mathematical model (e.g., by estimation of unknown parameters) on the basis of statistical data collected by observations. This volume is intended to be a concise textbook for a graduate level course, with carefully selected topics representing the most important areas of modern Probability, Random Processes and Statistics. The first part (Ch. 1-3) can serve as a self-contained, elementary introduction to Probability, Random Processes and Statistics. It contains a number of relatively sim ple and typical examples of random phenomena which allow a natural introduction of general structures and methods. Only knowledge of elements of real/complex analysis, linear algebra and ordinary differential equations is required here. The second part (Ch. 4-6) provides a foundation of Stochastic Analysis, gives information on basic models of random processes and tools to study them. Here a familiarity with elements of functional analysis is necessary. Our intention to make this course fast-moving made it necessary to present important material in a form of examples.

## Stochastik

*Einführung in die Wahrscheinlichkeitstheorie und Statistik*

**Author**: Hans-Otto Georgii

**Publisher:**Walter de Gruyter GmbH & Co KG

**ISBN:**3110386860

**Category:**Mathematics

**Page:**448

**View:**9787

**DOWNLOAD NOW »**

Due to the extremely positive reception of this textbook, it is now being published in its 5th edition. The book provides an introduction to the key ideas and elements of probability theory and statistics. Stochastic concepts, models, and methods are highlighted through typical application examples, then analyzed theoretically and systematically explored.

## Elementary Probability Theory

*With Stochastic Processes and an Introduction to Mathematical Finance*

**Author**: K. L. Chung,Farid AitSahlia

**Publisher:**Springer Science & Business Media

**ISBN:**9780387955780

**Category:**Mathematics

**Page:**404

**View:**5181

**DOWNLOAD NOW »**

This book provides an introduction to probability theory and its applications. The emphasis is on essential probabilistic reasoning, which is illustrated with a large number of samples. The fourth edition adds material related to mathematical finance as well as expansions on stable laws and martingales. From the reviews: "Almost thirty years after its first edition, this charming book continues to be an excellent text for teaching and for self study." -- STATISTICAL PAPERS

## Elementare Wahrscheinlichkeitstheorie und stochastische Prozesse

**Author**: Kai L. Chung

**Publisher:**Springer-Verlag

**ISBN:**3642670334

**Category:**Mathematics

**Page:**346

**View:**1328

**DOWNLOAD NOW »**

Aus den Besprechungen: "Unter den zahlreichen Einführungen in die Wahrscheinlichkeitsrechnung bildet dieses Buch eine erfreuliche Ausnahme. Der Stil einer lebendigen Vorlesung ist über Niederschrift und Übersetzung hinweg erhalten geblieben. In jedes Kapitel wird sehr anschaulich eingeführt. Sinn und Nützlichkeit der mathematischen Formulierungen werden den Lesern nahegebracht. Die wichtigsten Zusammenhänge sind als mathematische Sätze klar formuliert." #FREQUENZ#1

## Stochastics

*Introduction to Probability and Statistics*

**Author**: Hans-Otto Georgii

**Publisher:**Walter de Gruyter

**ISBN:**9783110191455

**Category:**Mathematics

**Page:**370

**View:**6070

**DOWNLOAD NOW »**

This book is a translation of the third edition of the well accepted German textbook 'Stochastik', which presents the fundamental ideas and results of both probability theory and statistics, and comprises the material of a one-year course. The stochastic concepts, models and methods are motivated by examples and problems and then developed and analysed systematically.

## Introduction to Probability and Statistics for Engineers

**Author**: Milan Holický

**Publisher:**Springer Science & Business Media

**ISBN:**3642383009

**Category:**Mathematics

**Page:**181

**View:**7068

**DOWNLOAD NOW »**

The theory of probability and mathematical statistics is becoming an indispensable discipline in many branches of science and engineering. This is caused by increasing significance of various uncertainties affecting performance of complex technological systems. Fundamental concepts and procedures used in analysis of these systems are often based on the theory of probability and mathematical statistics. The book sets out fundamental principles of the probability theory, supplemented by theoretical models of random variables, evaluation of experimental data, sampling theory, distribution updating and tests of statistical hypotheses. Basic concepts of Bayesian approach to probability and two-dimensional random variables, are also covered. Examples of reliability analysis and risk assessment of technological systems are used throughout the book to illustrate basic theoretical concepts and their applications. The primary audience for the book includes undergraduate and graduate students of science and engineering, scientific workers and engineers and specialists in the field of reliability analysis and risk assessment. Except basic knowledge of undergraduate mathematics no special prerequisite is required.