An Introduction to Riemannian Geometry

With Applications to Mechanics and Relativity
Author: Leonor Godinho,José Natário
Publisher: Springer
ISBN: 3319086669
Category: Mathematics
Page: 467
View: 1646
DOWNLOAD NOW »
Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.

Raum, Zeit, Materie

Vorlesungen über allgemeine Relativitätstheorie
Author: Hermann Weyl
Publisher: Springer-Verlag
ISBN: 3662020440
Category: Science
Page: 302
View: 8133
DOWNLOAD NOW »
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Raum · Zeit · Materie

Vorlesungen über Allgemeine Relativitätstheorie
Author: Hermann Weyl
Publisher: Springer
ISBN: N.A
Category: Science
Page: 338
View: 6852
DOWNLOAD NOW »
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Vektoranalysis

Differentialformen in Analysis, Geometrie und Physik
Author: Ilka Agricola,Thomas Friedrich
Publisher: Springer-Verlag
ISBN: 3834896721
Category: Mathematics
Page: 313
View: 9497
DOWNLOAD NOW »
Dieses Lehrbuch eignet sich als Fortsetzungskurs in Analysis nach den Grundvorlesungen im ersten Studienjahr. Die Vektoranalysis ist ein klassisches Teilgebiet der Mathematik mit vielfältigen Anwendungen, zum Beispiel in der Physik. Das Buch führt die Studierenden in die Welt der Differentialformen und Analysis auf Untermannigfaltigkeiten des Rn ein. Teile des Buches können auch sehr gut für Vorlesungen in Differentialgeometrie oder Mathematischer Physik verwendet werden. Der Text enthält viele ausführliche Beispiele mit vollständigem Lösungsweg, die zur Übung hilfreich sind. Zahlreiche Abbildungen veranschaulichen den Text. Am Ende jedes Kapitels befinden sich weitere Übungsaufgaben. In der ersten Auflage erschien das Buch unter dem Titel "Globale Analysis". Der Text wurde an vielen Stellen überarbeitet. Fast alle Bilder wurden neu erstellt. Inhaltliche Ergänzungen wurden u. a. in der Differentialgeometrie sowie der Elektrodynamik vorgenommen.

Elementare Differentialgeometrie


Author: Christian Bär
Publisher: Walter de Gruyter
ISBN: 3110224593
Category: Mathematics
Page: 356
View: 8471
DOWNLOAD NOW »
This textbook presents an introduction to the differential geometry of curves and surfaces. This second, revised edition has been expanded to include solutions and applications in cartography. Topics include Euclidean geometry, curve theory, surface theory, curvature concepts, minimal surfaces, Riemann geometry and the Gauss-Bonnet theorem.

Einführung in die Geometrie und Topologie


Author: Werner Ballmann
Publisher: Springer-Verlag
ISBN: 3034809018
Category: Mathematics
Page: 162
View: 1921
DOWNLOAD NOW »
Das Buch bietet eine Einführung in die Topologie, Differentialtopologie und Differentialgeometrie. Es basiert auf Manuskripten, die in verschiedenen Vorlesungszyklen erprobt wurden. Im ersten Kapitel werden grundlegende Begriffe und Resultate aus der mengentheoretischen Topologie bereitgestellt. Eine Ausnahme hiervon bildet der Jordansche Kurvensatz, der für Polygonzüge bewiesen wird und eine erste Idee davon vermitteln soll, welcher Art tiefere topologische Probleme sind. Im zweiten Kapitel werden Mannigfaltigkeiten und Liesche Gruppen eingeführt und an einer Reihe von Beispielen veranschaulicht. Diskutiert werden auch Tangential- und Vektorraumbündel, Differentiale, Vektorfelder und Liesche Klammern von Vektorfeldern. Weiter vertieft wird diese Diskussion im dritten Kapitel, in dem die de Rhamsche Kohomologie und das orientierte Integral eingeführt und der Brouwersche Fixpunktsatz, der Jordan-Brouwersche Zerlegungssatz und die Integralformel von Stokes bewiesen werden. Das abschließende vierte Kapitel ist den Grundlagen der Differentialgeometrie gewidmet. Entlang der Entwicklungslinien, die die Geometrie der Kurven und Untermannigfaltigkeiten in Euklidischen Räumen durchlaufen hat, werden Zusammenhänge und Krümmung, die zentralen Konzepte der Differentialgeometrie, diskutiert. Den Höhepunkt bilden die Gaussgleichungen, die Version des theorema egregium von Gauss für Untermannigfaltigkeiten beliebiger Dimension und Kodimension. Das Buch richtet sich in erster Linie an Mathematik- und Physikstudenten im zweiten und dritten Studienjahr und ist als Vorlage für ein- oder zweisemestrige Vorlesungen geeignet.

Differentialgeometrie, Topologie und Physik


Author: Mikio Nakahara
Publisher: Springer-Verlag
ISBN: 3662453002
Category: Science
Page: 597
View: 8108
DOWNLOAD NOW »
Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.

Geometrische Methoden in der Invariantentheorie


Author: Hanspeter Kraft
Publisher: Springer-Verlag
ISBN: 3663101436
Category: Technology & Engineering
Page: 308
View: 5661
DOWNLOAD NOW »
In dieser Einführung geht es vor allem um die geometrischen Aspekte der Invariantentheorie. Die hauptsächliche Motivation bildet das Studium von Klassifikations- und Normalformenproblemen, die auch historisch der Ausgangspunkt für invariantentheoretische Untersuchungen waren.

Differentialgeometrie von Kurven und Flächen


Author: Manfredo P. do Carmo
Publisher: Springer-Verlag
ISBN: 3322850722
Category: Technology & Engineering
Page: 263
View: 9568
DOWNLOAD NOW »
Inhalt: Kurven - Reguläre Flächen - Die Geometrie der Gauß-Abbildung - Die innere Geometrie von Flächen - Anhang

Vorlesungen über partielle Differentialgleichungen


Author: Vladimir I. Arnold
Publisher: Springer-Verlag
ISBN: 3540350314
Category: Mathematics
Page: 174
View: 1761
DOWNLOAD NOW »
Nach seinem bekannten und viel verwendeten Buch über gewöhnliche Differentialgleichungen widmet sich der berühmte Mathematiker Vladimir Arnold nun den partiellen Differentialgleichungen in einem neuen Lehrbuch. In seiner unnachahmlich eleganten Art führt er über einen geometrischen, anschaulichen Weg in das Thema ein, und ermöglicht den Lesern so ein vertieftes Verständnis der Natur der partiellen Differentialgleichungen. Für Studierende der Mathematik und Physik ist dieses Buch ein Muss. Wie alle Bücher Vladimir Arnolds ist dieses Buch voller geometrischer Erkenntnisse. Arnold illustriert jeden Grundsatz mit einer Abbildung. Das Buch behandelt die elementarsten Teile des Fachgebiets and beschränkt sich hauptsächlich auf das Cauchy-Problem und das Neumann-Problems für die klassischen Lineargleichungen der mathematischen Physik, insbesondere auf die Laplace-Gleichung und die Wellengleichung, wobei die Wärmeleitungsgleichung und die Korteweg-de-Vries-Gleichung aber ebenfalls diskutiert werden. Die physikalische Intuition wird besonders hervorgehoben. Eine große Anzahl von Problemen ist übers ganze Buch verteilt, und ein ganzer Satz von Aufgaben findet sich am Ende. Was dieses Buch so einzigartig macht, ist das besondere Talent Arnolds, ein Thema aus einer neuen, frischen Perspektive zu beleuchten. Er lüftet gerne den Schleier der Verallgemeinerung, der so viele mathematische Texte umgibt, und enthüllt die im wesentlichen einfachen, intuitiven Ideen, die dem Thema zugrunde liegen. Das kann er besser als jeder andere mathematische Autor.

Die Gleichungen der Physik

Meilensteine des Wissens
Author: Sander Bais
Publisher: Springer-Verlag
ISBN: 3764373628
Category: Science
Page: 91
View: 3275
DOWNLOAD NOW »
Seit Jahrtausenden versuchen wir, die Natur zu verstehen. Wir konnten einige der grossen Mysterien enträtseln, die uns umgeben, indem wir den Makro- und Mikrokosmos mit immer raffinierteren Werkzeugen untersuchen. Nicht nur, dass wir dabei eine überwältigende Vielfalt an Fakten gesammelt haben, wir enthüllten sogar Grundgesetze, welche die Struktur und Entwicklung der physikalischen Realität steuern. Insbesondere lernten wir aus diesen Beobachtungen, dass die Natur sich uns in der Sprache der Mathematik mitteilt. Die künstlichste aller Sprachen wird so zur natürlichsten. Die Gesetze stellen sich uns als Gleichungen dar, vielleicht der kompakteste und eindeutigste Ausdruck menschlichen Wissens. Dieses Buch ist ein Reiseführer zu den Gleichungen, den Meilensteinen des Wissens, die entscheidende Wendepunkte unseres Verständnises markieren. Wir wandern vom Herzstück der klassischen Physik, den Gesetzen von Newton und Maxwell, einerseits zu Einsteins scharfsinnigen Erkenntnissen über die Struktur von Raum und Zeit, und andererseits zu den Gleichungen von Schrödinger und Dirac und dem Standardmodell der Elementarteilchenphysik, das die Türen zum Mikrokosmos öffnete. Am Ende stehen wir vor den Super-Strings als mögliche Grundlage einer allumfassenden Theorie.

Die Idee der Riemannschen Fläche

mit 28 in den text Gedruckten Figuren
Author: Hermann Weyl
Publisher: N.A
ISBN: N.A
Category: Riemann surfaces
Page: 183
View: 3537
DOWNLOAD NOW »


Analysis 1


Author: V. A. Zorich
Publisher: Springer-Verlag
ISBN: 3540332782
Category: Mathematics
Page: 598
View: 4591
DOWNLOAD NOW »
Ausführlicher Einblick in die Anfänge der Analysis: von der Einführung der reellen Zahlen bis hin zu fortgeschrittenen Themen wie Differentialformen auf Mannigfaltigkeiten, asymptotische Betrachtungen, Fourier-, Laplace- und Legendre-Transformationen, elliptische Funktionen und Distributionen. Ausgerichtet auf naturwissenschaftliche Fragestellungen und in detaillierter Herangehensweise an die Integral- und Differentialrechnung. Mit einer Fülle hilfreicher Beispiele, Aufgaben und Anwendungen. In Band 1: vollständige Übersicht zur Integral- und Differentialrechnung einer Variablen, erweitert um die Differentialrechnung mehrerer Variablen.

Fünf Minuten Mathematik

100 Beiträge der Mathematik-Kolumne der Zeitung DIE WELT
Author: Ehrhard Behrends
Publisher: Springer-Verlag
ISBN: 3834890138
Category: Mathematics
Page: 254
View: 8082
DOWNLOAD NOW »
Das Buch enthält einen Querschnitt durch die moderne und alltägliche Mathematik. Die 100 Beiträge sind aus der Kolumne "Fünf Minuten Mathematik" hervorgegangen, in der verschiedene mathematische Gebiete in einer für Laien verständlichen Sprache behandelt wurden. Diese Beiträge wurden für das Buch überarbeitet, stark erweitert und mit Illustrationen versehen. Der Leser findet hier den mathematischen Hintergrund und viele attraktive Fotos zur Veranschaulichung der Mathematik.

Mathematische Grundlagen der Quantenmechanik


Author: Johann v. Neumann
Publisher: Springer-Verlag
ISBN: 3642960480
Category: Science
Page: 150
View: 5712
DOWNLOAD NOW »


Übungsbuch Algebra für Dummies


Author: Mary Jane Sterling
Publisher: John Wiley & Sons
ISBN: 3527708006
Category:
Page: 338
View: 2442
DOWNLOAD NOW »
Ist die Algebra in Studium oder Beruf unversehens wieder in Ihr Leben getreten und Sie benötigen eine Auffrischung Ihres Wissens? Hier hilft Ihnen das ”Übungsbuch Algebra für Dummies“. Mit Hunderten von Aufgaben, ausführlichen Lösungen und Erklärungen führt Sie dieses Buch in die Welt der Algebra ein. Mary Jane Sterling erklärt Ihnen noch einmal die grundlegenden Regeln zum Rechnen mit Brüchen und Wurzeln, wie Sie lineare und quadratische Gleichungen lösen und Textaufgaben bewältigen. Sie finden außerdem Übungen zur graphischen Darstellung von Geraden und Parabeln. So ist dieses Buch die perfekte Ergänzung zu ”Algebra für Dummies“.

Über Zahlen und Spiele


Author: John H. Conway
Publisher: Springer-Verlag
ISBN: 3322889971
Category: Mathematics
Page: 205
View: 5792
DOWNLOAD NOW »


Group Theory


Author: Helmut Wielandt
Publisher: Walter de Gruyter
ISBN: 3110863383
Category: Mathematics
Page: 821
View: 7925
DOWNLOAD NOW »


Meine Zahlen, meine Freunde

Glanzlichter der Zahlentheorie
Author: Paulo Ribenboim
Publisher: Springer-Verlag
ISBN: 3540879579
Category: Mathematics
Page: 391
View: 9889
DOWNLOAD NOW »
Paulo Ribenboim behandelt Zahlen in dieser außergewöhnlichen Sammlung von Übersichtsartikeln wie seine persönlichen Freunde. In leichter und allgemein zugänglicher Sprache berichtet er über Primzahlen, Fibonacci-Zahlen (und das Nordpolarmeer!), die klassischen Arbeiten von Gauß über binäre quadratische Formen, Eulers berühmtes primzahlerzeugendes Polynom, irrationale und transzendente Zahlen. Nach dem großen Erfolg von „Die Welt der Primzahlen" ist dies das zweite Buch von Paulo Ribenboim, das in deutscher Sprache erscheint.