An Introduction to Statistical Modeling of Extreme Values

Author: Stuart Coles
Publisher: Springer Science & Business Media
ISBN: 1447136756
Category: Mathematics
Page: 209
View: 4381
Directly oriented towards real practical application, this book develops both the basic theoretical framework of extreme value models and the statistical inferential techniques for using these models in practice. Intended for statisticians and non-statisticians alike, the theoretical treatment is elementary, with heuristics often replacing detailed mathematical proof. Most aspects of extreme modeling techniques are covered, including historical techniques (still widely used) and contemporary techniques based on point process models. A wide range of worked examples, using genuine datasets, illustrate the various modeling procedures and a concluding chapter provides a brief introduction to a number of more advanced topics, including Bayesian inference and spatial extremes. All the computations are carried out using S-PLUS, and the corresponding datasets and functions are available via the Internet for readers to recreate examples for themselves. An essential reference for students and researchers in statistics and disciplines such as engineering, finance and environmental science, this book will also appeal to practitioners looking for practical help in solving real problems. Stuart Coles is Reader in Statistics at the University of Bristol, UK, having previously lectured at the universities of Nottingham and Lancaster. In 1992 he was the first recipient of the Royal Statistical Society's research prize. He has published widely in the statistical literature, principally in the area of extreme value modeling.

An Introduction to Statistical Modelling

Author: W. J. Krzanowski
Publisher: Wiley
ISBN: 9780470711019
Category: Mathematics
Page: 264
View: 1736
Statisticians rely heavily on making models of 'causal situations' in order to fully explain and predict events. Modelling therefore plays a vital part in all applications of statistics and is a component of most undergraduate programmes. 'An Introduction to Statistical Modelling' provides a single reference with an applied slant that caters for all three years of a degree course. The book concentrates on core issues and only the most essential mathematical justifications are given in detail. Attention is firmly focused on the statistical aspects of the techniques, in this lively, practical approach.

An Introduction to Statistics with Python

With Applications in the Life Sciences
Author: Thomas Haslwanter
Publisher: Springer
ISBN: 3319283162
Category: Computers
Page: 278
View: 2466
This textbook provides an introduction to the free software Python and its use for statistical data analysis. It covers common statistical tests for continuous, discrete and categorical data, as well as linear regression analysis and topics from survival analysis and Bayesian statistics. Working code and data for Python solutions for each test, together with easy-to-follow Python examples, can be reproduced by the reader and reinforce their immediate understanding of the topic. With recent advances in the Python ecosystem, Python has become a popular language for scientific computing, offering a powerful environment for statistical data analysis and an interesting alternative to R. The book is intended for master and PhD students, mainly from the life and medical sciences, with a basic knowledge of statistics. As it also provides some statistics background, the book can be used by anyone who wants to perform a statistical data analysis.

An Introduction to Statistical Learning

with Applications in R
Author: Gareth James,Daniela Witten,Trevor Hastie,Robert Tibshirani
Publisher: Springer Science & Business Media
ISBN: 1461471389
Category: Mathematics
Page: 426
View: 2857
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

Modelling Under Risk and Uncertainty

An Introduction to Statistical, Phenomenological and Computational Methods
Author: Etienne de Rocquigny
Publisher: John Wiley & Sons
ISBN: 0470695145
Category: Mathematics
Page: 434
View: 6362
"This volume addresses a concern of very high relevance and growing interest for large industries or environmentalists: risk and uncertainty in complex systems. It gives new insight on the peculiar mathematical challenges generated by recent industrial safety or environmental control analysis, focusing on implementing decision theory choices related to risk and uncertainty analysis through statistical estimation and computation, in the presence of physical modeling and risk analysis. The result will lead statisticians and associated professionals to formulate and solve new challenges at the frontier between statistical modeling, physics, scientific computing, and risk analysis"--

An Introduction to Generalized Linear Models

Author: Annette J. Dobson,Adrian G. Barnett
Publisher: CRC Press
ISBN: 1351726218
Category: Mathematics
Page: 376
View: 7952
An Introduction to Generalized Linear Models, Fourth Edition provides a cohesive framework for statistical modelling, with an emphasis on numerical and graphical methods. This new edition of a bestseller has been updated with new sections on non-linear associations, strategies for model selection, and a Postface on good statistical practice. Like its predecessor, this edition presents the theoretical background of generalized linear models (GLMs) before focusing on methods for analyzing particular kinds of data. It covers Normal, Poisson, and Binomial distributions; linear regression models; classical estimation and model fitting methods; and frequentist methods of statistical inference. After forming this foundation, the authors explore multiple linear regression, analysis of variance (ANOVA), logistic regression, log-linear models, survival analysis, multilevel modeling, Bayesian models, and Markov chain Monte Carlo (MCMC) methods. Introduces GLMs in a way that enables readers to understand the unifying structure that underpins them Discusses common concepts and principles of advanced GLMs, including nominal and ordinal regression, survival analysis, non-linear associations and longitudinal analysis Connects Bayesian analysis and MCMC methods to fit GLMs Contains numerous examples from business, medicine, engineering, and the social sciences Provides the example code for R, Stata, and WinBUGS to encourage implementation of the methods Offers the data sets and solutions to the exercises online Describes the components of good statistical practice to improve scientific validity and reproducibility of results. Using popular statistical software programs, this concise and accessible text illustrates practical approaches to estimation, model fitting, and model comparisons.

Statistical Computing

An Introduction to Data Analysis using S-Plus
Author: Michael J. Crawley
Publisher: Wiley
ISBN: 9780471560401
Category: Computers
Page: 772
View: 9836
Many statistical modelling and data analysis techniques can be difficult to grasp and apply, and it is often necessary to use computer software to aid the implementation of large data sets and to obtain useful results. S-Plus is recognised as one of the most powerful and flexible statistical software packages, and it enables the user to apply a number of statistical methods, ranging from simple regression to time series or multivariate analysis. This text offers extensive coverage of many basic and more advanced statistical methods, concentrating on graphical inspection, and features step-by-step instructions to help the non-statistician to understand fully the methodology. * Extensive coverage of basic, intermediate and advanced statistical methods * Uses S-Plus, which is recognised globally as one of the most powerful and flexible statistical software packages * Emphasis is on graphical data inspection, parameter estimation and model criticism * Features hundreds of worked examples to illustrate the techniques described * Accessible to scientists from a large number of disciplines with minimal statistical knowledge * Written by a leading figure in the field, who runs a number of successful international short courses * Accompanied by a Web site featuring worked examples, data sets, exercises and solutions A valuable reference resource for researchers, professionals, lecturers and students from statistics, the life sciences, medicine, engineering, economics and the social sciences.


An Introduction using R
Author: Michael J. Crawley
Publisher: John Wiley & Sons
ISBN: 9780470022986
Category: Mathematics
Page: 342
View: 1861
Computer software is an essential tool for many statistical modelling and data analysis techniques, aiding in the implementation of large data sets in order to obtain useful results. R is one of the most powerful and flexible statistical software packages available, and enables the user to apply a wide variety of statistical methods ranging from simple regression to generalized linear modelling. Statistics: An Introduction using R is a clear and concise introductory textbook to statistical analysis using this powerful and free software, and follows on from the success of the author's previous best-selling title Statistical Computing. * Features step-by-step instructions that assume no mathematics, statistics or programming background, helping the non-statistician to fully understand the methodology. * Uses a series of realistic examples, developing step-wise from the simplest cases, with the emphasis on checking the assumptions (e.g. constancy of variance and normality of errors) and the adequacy of the model chosen to fit the data. * The emphasis throughout is on estimation of effect sizes and confidence intervals, rather than on hypothesis testing. * Covers the full range of statistical techniques likely to be need to analyse the data from research projects, including elementary material like t-tests and chi-squared tests, intermediate methods like regression and analysis of variance, and more advanced techniques like generalized linear modelling. * Includes numerous worked examples and exercises within each chapter. * Accompanied by a website featuring worked examples, data sets, exercises and solutions: Statistics: An Introduction using R is the first text to offer such a concise introduction to a broad array of statistical methods, at a level that is elementary enough to appeal to a broad range of disciplines. It is primarily aimed at undergraduate students in medicine, engineering, economics and biology - but will also appeal to postgraduates who have not previously covered this area, or wish to switch to using R.

An Introduction to Generalized Linear Models, Second Edition

Author: Annette J. Dobson
Publisher: CRC Press
ISBN: 9781420057683
Category: Mathematics
Page: 240
View: 8362
Generalized linear models provide a unified theoretical and conceptual framework for many of the most commonly used statistical methods. In the ten years since publication of the first edition of this bestselling text, great strides have been made in the development of new methods and in software for generalized linear models and other closely related models. Thoroughly revised and updated, An Introduction to Generalized Linear Models, Second Edition continues to initiate intermediate students of statistics, and the many other disciplines that use statistics, in the practical use of these models and methods. The new edition incorporates many of the important developments of the last decade, including survival analysis, nominal and ordinal logistic regression, generalized estimating equations, and multi-level models. It also includes modern methods for checking model adequacy and examples from an even wider range of application. Statistics can appear to the uninitiated as a collection of unrelated tools. An Introduction to Generalized Linear Models, Second Edition illustrates how these apparently disparate methods are examples or special cases of a conceptually simple structure based on the exponential family of distribution, maximum likelihood estimation, and the principles of statistical modelling.

An Introduction to Mathematical Models in Ecology and Evolution

Time and Space
Author: Mike Gillman
Publisher: John Wiley & Sons
ISBN: 1444312073
Category: Science
Page: 168
View: 903
Students often find it difficult to grasp fundamental ecologicaland evolutionary concepts because of their inherently mathematicalnature. Likewise, the application of ecological and evolutionarytheory often requires a high degree of mathematical competence. This book is a first step to addressing these difficulties,providing a broad introduction to the key methods and underlyingconcepts of mathematical models in ecology and evolution. The bookis intended to serve the needs of undergraduate and postgraduateecology and evolution students who need to access the mathematicaland statistical modelling literature essential to theirsubjects. The book assumes minimal mathematics and statistics knowledgewhilst covering a wide variety of methods, many of which are at thefore-front of ecological and evolutionary research. The book alsohighlights the applications of modelling to practical problems suchas sustainable harvesting and biological control. Key features: Written clearly and succinctly, requiring minimal in-depthknowledge of mathematics Introduces students to the use of computer models in bothfields of ecology and evolutionary biology Market - senior undergraduate students and beginningpostgraduates in ecology and evolutionary biology

Statistical Modeling for Biomedical Researchers

A Simple Introduction to the Analysis of Complex Data
Author: William D. Dupont,William Dudley Dupont
Publisher: Cambridge University Press
ISBN: 0521849527
Category: Medical
Page: 522
View: 721
A second edition of the easy-to-use standard text guiding biomedical researchers in the use of advanced statistical methods.

An Introduction to Multilevel Modeling Techniques

Author: Ronald H. Heck,Scott L. Thomas
Publisher: Psychology Press
ISBN: 1135678316
Category: Computers
Page: 224
View: 6662
This book provides a broad overview of basic multilevel modeling issues and illustrates techniques building analyses around several organizational data sets. Although the focus is primarily on educational and organizational settings, the examples will help the reader discover other applications for these techniques. Two basic classes of multilevel models are developed: multilevel regression models and multilevel models for covariance structures--are used to develop the rationale behind these models and provide an introduction to the design and analysis of research studies using two multilevel analytic techniques--hierarchical linear modeling and structural equation modeling.

An Introduction to Generalized Linear Models

Author: George H. Dunteman,Moon-Ho R. Ho,Moon-Ho R.. Ho
Publisher: SAGE
ISBN: 9780761920847
Category: Mathematics
Page: 72
View: 6791
Do you have data that is not normally distributed and don't know how to analyze it using generalized linear models (GLM)? Beginning with a discussion of fundamental statistical modeling concepts in a multiple regression framework, the authors extend these concepts to GLM and demonstrate the similarity of various regression models to GLM. Each procedure is illustrated using real life data sets. The book provides an accessible but thorough introduction to GLM, exponential family distribution, and maximum likelihood estimation; includes discussion on checking model adequacy and description on how to use SAS to fit GLM; and describes the connection between survival analysis and GLM. It is an ideal text for social science researchers who do not have a strong statistical background, but would like to learn more advanced techniques having taken an introductory course covering regression analysis.

An Introduction to Stochastic Modeling, Student Solutions Manual (e-only)

Author: Mark Pinsky,Samuel Karlin
Publisher: Academic Press
ISBN: 9780123852267
Category: Mathematics
Page: 510
View: 9294
An Introduction to Stochastic Modeling, Student Solutions Manual (e-only)

An Introduction to Model-Based Survey Sampling with Applications

Author: Ray Chambers,Robert Clark
Publisher: Oxford University Press
ISBN: 019856662X
Category: Mathematics
Page: 265
View: 7565
This text brings together important ideas on the model-based approach to sample survey, which has been developed over the last twenty years. Suitable for graduate students and professional statisticians, it moves from basic ideas fundamental to sampling to more rigorous mathematical modelling and data analysis and includes exercises and solutions.

Mathematical Statistics

An Introduction to Likelihood Based Inference
Author: Richard J. Rossi
Publisher: John Wiley & Sons
ISBN: 1118771168
Category: Mathematics
Page: 448
View: 1544
Presents a unified approach to parametric estimation, confidence intervals, hypothesis testing, and statistical modeling, which are uniquely based on the likelihood function This book addresses mathematical statistics for upper-undergraduates and first year graduate students, tying chapters on estimation, confidence intervals, hypothesis testing, and statistical models together to present a unifying focus on the likelihood function. It also emphasizes the important ideas in statistical modeling, such as sufficiency, exponential family distributions, and large sample properties. Mathematical Statistics: An Introduction to Likelihood Based Inference makes advanced topics accessible and understandable and covers many topics in more depth than typical mathematical statistics textbooks. It includes numerous examples, case studies, a large number of exercises ranging from drill and skill to extremely difficult problems, and many of the important theorems of mathematical statistics along with their proofs. In addition to the connected chapters mentioned above, Mathematical Statistics covers likelihood-based estimation, with emphasis on multidimensional parameter spaces and range dependent support. It also includes a chapter on confidence intervals, which contains examples of exact confidence intervals along with the standard large sample confidence intervals based on the MLE's and bootstrap confidence intervals. There’s also a chapter on parametric statistical models featuring sections on non-iid observations, linear regression, logistic regression, Poisson regression, and linear models. Prepares students with the tools needed to be successful in their future work in statistics data science Includes practical case studies including real-life data collected from Yellowstone National Park, the Donner party, and the Titanic voyage Emphasizes the important ideas to statistical modeling, such as sufficiency, exponential family distributions, and large sample properties Includes sections on Bayesian estimation and credible intervals Features examples, problems, and solutions Mathematical Statistics: An Introduction to Likelihood Based Inference is an ideal textbook for upper-undergraduate and graduate courses in probability, mathematical statistics, and/or statistical inference.

Statistical Modeling and Computation

Author: Dirk P. Kroese,Joshua C.C. Chan
Publisher: Springer Science & Business Media
ISBN: 1461487757
Category: Computers
Page: 400
View: 7134
This textbook on statistical modeling and statistical inference will assist advanced undergraduate and graduate students. Statistical Modeling and Computation provides a unique introduction to modern Statistics from both classical and Bayesian perspectives. It also offers an integrated treatment of Mathematical Statistics and modern statistical computation, emphasizing statistical modeling, computational techniques, and applications. Each of the three parts will cover topics essential to university courses. Part I covers the fundamentals of probability theory. In Part II, the authors introduce a wide variety of classical models that include, among others, linear regression and ANOVA models. In Part III, the authors address the statistical analysis and computation of various advanced models, such as generalized linear, state-space and Gaussian models. Particular attention is paid to fast Monte Carlo techniques for Bayesian inference on these models. Throughout the book the authors include a large number of illustrative examples and solved problems. The book also features a section with solutions, an appendix that serves as a MATLAB primer, and a mathematical supplement.​

Statistik-Workshop für Programmierer

Author: Allen B. Downey
Publisher: O'Reilly Germany
ISBN: 3868993436
Category: Computers
Page: 160
View: 3985
Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.