## An Introduction to Stochastic Modeling

**Author**: Howard M. Taylor,Samuel Karlin

**Publisher:**Academic Press

**ISBN:**1483220443

**Category:**Mathematics

**Page:**578

**View:**4164

**DOWNLOAD NOW »**

An Introduction to Stochastic Modeling, Revised Edition provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

## An Introduction to Stochastic Modeling, Student Solutions Manual (e-only)

**Author**: Mark Pinsky,Samuel Karlin

**Publisher:**Academic Press

**ISBN:**9780123852267

**Category:**Mathematics

**Page:**510

**View:**1041

**DOWNLOAD NOW »**

An Introduction to Stochastic Modeling, Student Solutions Manual (e-only)

## Introduction to Stochastic Models

**Author**: Marius Iosifescu,Nikolaos Limnios,Gheorghe Oprisan

**Publisher:**John Wiley & Sons

**ISBN:**1118623525

**Category:**Mathematics

**Page:**320

**View:**7414

**DOWNLOAD NOW »**

This book provides a pedagogical examination of the way in which stochastic models are encountered in applied sciences and techniques such as physics, engineering, biology and genetics, economics and social sciences. It covers Markov and semi-Markov models, as well as their particular cases: Poisson, renewal processes, branching processes, Ehrenfest models, genetic models, optimal stopping, reliability, reservoir theory, storage models, and queuing systems. Given this comprehensive treatment of the subject, students and researchers in applied sciences, as well as anyone looking for an introduction to stochastic models, will find this title of invaluable use.

## An Introduction to Continuous-Time Stochastic Processes

*Theory, Models, and Applications to Finance, Biology, and Medicine*

**Author**: Vincenzo Capasso,David Bakstein

**Publisher:**Birkhäuser

**ISBN:**1493927574

**Category:**Mathematics

**Page:**482

**View:**3249

**DOWNLOAD NOW »**

This textbook, now in its third edition, offers a rigorous and self-contained introduction to the theory of continuous-time stochastic processes, stochastic integrals, and stochastic differential equations. Expertly balancing theory and applications, the work features concrete examples of modeling real-world problems from biology, medicine, industrial applications, finance, and insurance using stochastic methods. No previous knowledge of stochastic processes is required. Key topics include: Markov processes Stochastic differential equations Arbitrage-free markets and financial derivatives Insurance risk Population dynamics, and epidemics Agent-based models New to the Third Edition: Infinitely divisible distributions Random measures Levy processes Fractional Brownian motion Ergodic theory Karhunen-Loeve expansion Additional applications Additional exercises Smoluchowski approximation of Langevin systems An Introduction to Continuous-Time Stochastic Processes, Third Edition will be of interest to a broad audience of students, pure and applied mathematicians, and researchers and practitioners in mathematical finance, biomathematics, biotechnology, and engineering. Suitable as a textbook for graduate or undergraduate courses, as well as European Masters courses (according to the two-year-long second cycle of the “Bologna Scheme”), the work may also be used for self-study or as a reference. Prerequisites include knowledge of calculus and some analysis; exposure to probability would be helpful but not required since the necessary fundamentals of measure and integration are provided. From reviews of previous editions: "The book is ... an account of fundamental concepts as they appear in relevant modern applications and literature. ... The book addresses three main groups: first, mathematicians working in a different field; second, other scientists and professionals from a business or academic background; third, graduate or advanced undergraduate students of a quantitative subject related to stochastic theory and/or applications." -Zentralblatt MATH

## An Introduction to Differential Equations

*Stochastic Modeling, Methods and Analysis(Volume 2)*

**Author**: Anil G Ladde,G S Ladde

**Publisher:**World Scientific Publishing Company

**ISBN:**9814397393

**Category:**Mathematics

**Page:**636

**View:**1997

**DOWNLOAD NOW »**

Volume 1: Deterministic Modeling, Methods and Analysis For more than half a century, stochastic calculus and stochastic differential equations have played a major role in analyzing the dynamic phenomena in the biological and physical sciences, as well as engineering. The advancement of knowledge in stochastic differential equations is spreading rapidly across the graduate and postgraduate programs in universities around the globe. This will be the first available book that can be used in any undergraduate/graduate stochastic modeling/applied mathematics courses and that can be used by an interdisciplinary researcher with a minimal academic background. An Introduction to Differential Equations: Volume 2 is a stochastic version of Volume 1 (“An Introduction to Differential Equations: Deterministic Modeling, Methods and Analysis”). Both books have a similar design, but naturally, differ by calculi. Again, both volumes use an innovative style in the presentation of the topics, methods and concepts with adequate preparation in deterministic Calculus. Errata Errata (32 KB)

## A First Course in Stochastic Models

**Author**: Henk C. Tijms

**Publisher:**John Wiley and Sons

**ISBN:**0470864281

**Category:**Mathematics

**Page:**448

**View:**9017

**DOWNLOAD NOW »**

The field of applied probability has changed profoundly in the past twenty years. The development of computational methods has greatly contributed to a better understanding of the theory. A First Course in Stochastic Models provides a self-contained introduction to the theory and applications of stochastic models. Emphasis is placed on establishing the theoretical foundations of the subject, thereby providing a framework in which the applications can be understood. Without this solid basis in theory no applications can be solved. Provides an introduction to the use of stochastic models through an integrated presentation of theory, algorithms and applications. Incorporates recent developments in computational probability. Includes a wide range of examples that illustrate the models and make the methods of solution clear. Features an abundance of motivating exercises that help the student learn how to apply the theory. Accessible to anyone with a basic knowledge of probability. A First Course in Stochastic Models is suitable for senior undergraduate and graduate students from computer science, engineering, statistics, operations resear ch, and any other discipline where stochastic modelling takes place. It stands out amongst other textbooks on the subject because of its integrated presentation of theory, algorithms and applications.

## An Introduction to Probabilistic Modeling

**Author**: Pierre Bremaud

**Publisher:**Springer Science & Business Media

**ISBN:**1461210461

**Category:**Mathematics

**Page:**208

**View:**7964

**DOWNLOAD NOW »**

Introduction to the basic concepts of probability theory: independence, expectation, convergence in law and almost-sure convergence. Short expositions of more advanced topics such as Markov Chains, Stochastic Processes, Bayesian Decision Theory and Information Theory.

## Introduction to Modeling and Analysis of Stochastic Systems

**Author**: V. G. Kulkarni

**Publisher:**Springer

**ISBN:**9781441917720

**Category:**Mathematics

**Page:**313

**View:**846

**DOWNLOAD NOW »**

This book provides a self-contained review of all the relevant topics in probability theory. A software package called MAXIM, which runs on MATLAB, is made available for downloading. Vidyadhar G. Kulkarni is Professor of Operations Research at the University of North Carolina at Chapel Hill.

## Stochastic Models: Analysis and Applications

**Author**: B. R. Bhat

**Publisher:**New Age International

**ISBN:**9788122412284

**Category:**Mathematical statistics

**Page:**408

**View:**7745

**DOWNLOAD NOW »**

The Book Presents A Systematic Exposition Of The Basic Theory And Applications Of Stochastic Models.Emphasising The Modelling Rather Than Mathematical Aspects Of Stochastic Processes, The Book Bridges The Gap Between The Theory And Applications Of These Processes.The Basic Building Blocks Of Model Construction Are Explained In A Step By Step Manner, Starting From The Simplest Model Of Random Walk And Proceeding Gradually To More Complicated Models. Several Examples Are Given Throughout The Text To Illustrate Important Analytical Properties As Well As To Provide Applications.The Book Also Includes A Detailed Chapter On Inference For Stochastic Processes. This Chapter Highlights Some Of The Recent Developments In The Subject And Explains Them Through Illustrative Examples.An Important Feature Of The Book Is The Complements And Problems Section At The End Of Each Chapter Which Presents (I) Additional Properties Of The Model, (Ii) Extensions Of The Model, And (Iii) Applications Of The Model To Different Areas.With All These Features, This Is An Invaluable Text For Post-Graduate Students Of Statistics, Mathematics And Operation Research.

## Applied Stochastic Models and Control for Finance and Insurance

**Author**: Charles S. Tapiero

**Publisher:**Springer Science & Business Media

**ISBN:**1461558239

**Category:**Business & Economics

**Page:**341

**View:**637

**DOWNLOAD NOW »**

Applied Stochastic Models and Control for Finance and Insurance presents at an introductory level some essential stochastic models applied in economics, finance and insurance. Markov chains, random walks, stochastic differential equations and other stochastic processes are used throughout the book and systematically applied to economic and financial applications. In addition, a dynamic programming framework is used to deal with some basic optimization problems. The book begins by introducing problems of economics, finance and insurance which involve time, uncertainty and risk. A number of cases are treated in detail, spanning risk management, volatility, memory, the time structure of preferences, interest rates and yields, etc. The second and third chapters provide an introduction to stochastic models and their application. Stochastic differential equations and stochastic calculus are presented in an intuitive manner, and numerous applications and exercises are used to facilitate their understanding and their use in Chapter 3. A number of other processes which are increasingly used in finance and insurance are introduced in Chapter 4. In the fifth chapter, ARCH and GARCH models are presented and their application to modeling volatility is emphasized. An outline of decision-making procedures is presented in Chapter 6. Furthermore, we also introduce the essentials of stochastic dynamic programming and control, and provide first steps for the student who seeks to apply these techniques. Finally, in Chapter 7, numerical techniques and approximations to stochastic processes are examined. This book can be used in business, economics, financial engineering and decision sciences schools for second year Master's students, as well as in a number of courses widely given in departments of statistics, systems and decision sciences.

## An Introduction to Mathematical Modeling

**Author**: Edward A. Bender

**Publisher:**Courier Corporation

**ISBN:**0486137120

**Category:**Mathematics

**Page:**272

**View:**7687

**DOWNLOAD NOW »**

Accessible text features over 100 reality-based examples pulled from the science, engineering, and operations research fields. Prerequisites: ordinary differential equations, continuous probability. Numerous references. Includes 27 black-and-white figures. 1978 edition.

## Stochastic Modeling

*Analysis and Simulation*

**Author**: Barry L. Nelson

**Publisher:**Courier Corporation

**ISBN:**0486139948

**Category:**Mathematics

**Page:**336

**View:**3456

**DOWNLOAD NOW »**

Coherent introduction to techniques also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Includes formulation of models, analysis, and interpretation of results. 1995 edition.

## Stochastic Calculus

*An Introduction Through Theory and Exercises*

**Author**: Paolo Baldi

**Publisher:**Springer

**ISBN:**3319622269

**Category:**Mathematics

**Page:**627

**View:**6514

**DOWNLOAD NOW »**

This book provides a comprehensive introduction to the theory of stochastic calculus and some of its applications. It is the only textbook on the subject to include more than two hundred exercises with complete solutions. After explaining the basic elements of probability, the author introduces more advanced topics such as Brownian motion, martingales and Markov processes. The core of the book covers stochastic calculus, including stochastic differential equations, the relationship to partial differential equations, numerical methods and simulation, as well as applications of stochastic processes to finance. The final chapter provides detailed solutions to all exercises, in some cases presenting various solution techniques together with a discussion of advantages and drawbacks of the methods used. Stochastic Calculus will be particularly useful to advanced undergraduate and graduate students wishing to acquire a solid understanding of the subject through the theory and exercises. Including full mathematical statements and rigorous proofs, this book is completely self-contained and suitable for lecture courses as well as self-study.

## Epidemic Modelling

*An Introduction*

**Author**: D. J. Daley,J. Gani

**Publisher:**Cambridge University Press

**ISBN:**9780521014670

**Category:**Mathematics

**Page:**213

**View:**530

**DOWNLOAD NOW »**

This is a general introduction to the mathematical modelling of diseases.

## Markov Processes for Stochastic Modeling

**Author**: Oliver Ibe

**Publisher:**Academic Press

**ISBN:**0080922457

**Category:**Mathematics

**Page:**512

**View:**8761

**DOWNLOAD NOW »**

Markov processes are used to model systems with limited memory. They are used in many areas including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. This book, which is written for upper level undergraduate and graduate students, and researchers, presents a unified presentation of Markov processes. In addition to traditional topics such as Markovian queueing system, the book discusses such topics as continuous-time random walk,correlated random walk, Brownian motion, diffusion processes, hidden Markov models, Markov random fields, Markov point processes and Markov chain Monte Carlo. Continuous-time random walk is currently used in econophysics to model the financial market, which has traditionally been modelled as a Brownian motion. Correlated random walk is popularly used in ecological studies to model animal and insect movement. Hidden Markov models are used in speech analysis and DNA sequence analysis while Markov random fields and Markov point processes are used in image analysis. Thus, the book is designed to have a very broad appeal. - Provides the practical, current applications of Markov processes - Coverage of HMM, Point processes, and Monte Carlo - Includes enough theory to help students gain throrough understanding of the subject - Principles can be immediately applied in many specific research projects, saving researchers time - End of chapter exercises provide reinforcement, practice and increased understanding to the student

## Mathematical Epidemiology

**Author**: Fred Brauer,Pauline van den Driessche,J. Wu

**Publisher:**Springer Science & Business Media

**ISBN:**3540789103

**Category:**Medical

**Page:**414

**View:**5920

**DOWNLOAD NOW »**

Based on lecture notes of two summer schools with a mixed audience from mathematical sciences, epidemiology and public health, this volume offers a comprehensive introduction to basic ideas and techniques in modeling infectious diseases, for the comparison of strategies to plan for an anticipated epidemic or pandemic, and to deal with a disease outbreak in real time. It covers detailed case studies for diseases including pandemic influenza, West Nile virus, and childhood diseases. Models for other diseases including Severe Acute Respiratory Syndrome, fox rabies, and sexually transmitted infections are included as applications. Its chapters are coherent and complementary independent units. In order to accustom students to look at the current literature and to experience different perspectives, no attempt has been made to achieve united writing style or unified notation. Notes on some mathematical background (calculus, matrix algebra, differential equations, and probability) have been prepared and may be downloaded at the web site of the Centre for Disease Modeling (www.cdm.yorku.ca).

## A Course in Stochastic Processes

*Stochastic Models and Statistical Inference*

**Author**: Denis Bosq,Hung T. Nguyen

**Publisher:**Springer Science & Business Media

**ISBN:**9401587698

**Category:**Mathematics

**Page:**354

**View:**2177

**DOWNLOAD NOW »**

This text is an Elementary Introduction to Stochastic Processes in discrete and continuous time with an initiation of the statistical inference. The material is standard and classical for a first course in Stochastic Processes at the senior/graduate level (lessons 1-12). To provide students with a view of statistics of stochastic processes, three lessons (13-15) were added. These lessons can be either optional or serve as an introduction to statistical inference with dependent observations. Several points of this text need to be elaborated, (1) The pedagogy is somewhat obvious. Since this text is designed for a one semester course, each lesson can be covered in one week or so. Having in mind a mixed audience of students from different departments (Math ematics, Statistics, Economics, Engineering, etc.) we have presented the material in each lesson in the most simple way, with emphasis on moti vation of concepts, aspects of applications and computational procedures. Basically, we try to explain to beginners questions such as "What is the topic in this lesson?" "Why this topic?", "How to study this topic math ematically?". The exercises at the end of each lesson will deepen the stu dents' understanding of the material, and test their ability to carry out basic computations. Exercises with an asterisk are optional (difficult) and might not be suitable for homework, but should provide food for thought.

## An Introduction to Sparse Stochastic Processes

**Author**: Michael Unser,Pouya D. Tafti

**Publisher:**Cambridge University Press

**ISBN:**1316061604

**Category:**Technology & Engineering

**Page:**N.A

**View:**2911

**DOWNLOAD NOW »**

Providing a novel approach to sparsity, this comprehensive book presents the theory of stochastic processes that are ruled by linear stochastic differential equations, and that admit a parsimonious representation in a matched wavelet-like basis. Two key themes are the statistical property of infinite divisibility, which leads to two distinct types of behaviour - Gaussian and sparse - and the structural link between linear stochastic processes and spline functions, which is exploited to simplify the mathematical analysis. The core of the book is devoted to investigating sparse processes, including a complete description of their transform-domain statistics. The final part develops practical signal-processing algorithms that are based on these models, with special emphasis on biomedical image reconstruction. This is an ideal reference for graduate students and researchers with an interest in signal/image processing, compressed sensing, approximation theory, machine learning, or statistics.

## Operations Research

*Einführung*

**Author**: Frederick S. Hillier,Gerald J. Liebermann

**Publisher:**Walter de Gruyter GmbH & Co KG

**ISBN:**3486792083

**Category:**Business & Economics

**Page:**868

**View:**5212

**DOWNLOAD NOW »**

Aus dem Inhalt: Was ist Operations Research? Überblick über die Modellierungsgrundsätze des Operations Research. Einführung in die lineare Programmierung. Die Lösung linearer Programmierungsprobleme: Das Simplexverfahren. Stochastische Prozesse. Warteschlangentheorie. Lagerhaltungstheorie. Prognoseverfahren. Markov-Entscheidungsprozesse. Reliabilität. Entscheidungstheorie. Die Theorie des Simplexverfahrens Qualitätstheorie und Sensitivitätsanalyse Spezialfälle linearer Programmierungsprobleme. Die Formulierung linearer Programmierungsmodelle und Goal-Programmierung. Weitere Algorithmen der linearen Programmierung. Netzwerkanalyse einschließlich PERT-CPM. Dynamische Optimierung. Spieltheorie. Ganzzahlige Programmierung. Nichtlineare Programmierung Simulation. Anhang. Lösungen für ausgewählte Übungsaufgaben.