An Introduction to Stochastic Orders

Author: Felix Belzunce,Carolina Martinez Riquelme,Julio Mulero
Publisher: Academic Press
ISBN: 0128038268
Category: Mathematics
Page: 174
View: 666
An Introduction to Stochastic Orders discusses this powerful tool that can be used in comparing probabilistic models in different areas such as reliability, survival analysis, risks, finance, and economics. The book provides a general background on this topic for students and researchers who want to use it as a tool for their research. In addition, users will find detailed proofs of the main results and applications to several probabilistic models of interest in several fields, and discussions of fundamental properties of several stochastic orders, in the univariate and multivariate cases, along with applications to probabilistic models. Introduces stochastic orders and its notation Discusses different orders of univariate stochastic orders Explains multivariate stochastic orders and their convex, likelihood ratio, and dispersive orders

Introduction to Stochastic Processes with R

Author: Robert P. Dobrow
Publisher: John Wiley & Sons
ISBN: 1118740653
Category: Mathematics
Page: 504
View: 3707
An introduction to stochastic processes through the use of R Introduction to Stochastic Processes with R is an accessible and well-balanced presentation of the theory of stochastic processes, with an emphasis on real-world applications of probability theory in the natural and social sciences. The use of simulation, by means of the popular statistical freeware R, makes theoretical results come alive with practical, hands-on demonstrations. Written by a highly-qualified expert in the field, the author presents numerous examples from a wide array of disciplines, which are used to illustrate concepts and highlight computational and theoretical results. Developing readers’ problem-solving skills and mathematical maturity, Introduction to Stochastic Processes with R features: Over 200 examples and 600 end-of-chapter exercises A tutorial for getting started with R, and appendices that contain review material in probability and matrix algebra Discussions of many timely and interesting supplemental topics including Markov chain Monte Carlo, random walk on graphs, card shuffling, Black-Scholes options pricing, applications in biology and genetics, cryptography, martingales, and stochastic calculus Introductions to mathematics as needed in order to suit readers at many mathematical levels A companion website that includes relevant data files as well as all R code and scripts used throughout the book Introduction to Stochastic Processes with R is an ideal textbook for an introductory course in stochastic processes. The book is aimed at undergraduate and beginning graduate-level students in the science, technology, engineering, and mathematics disciplines. The book is also an excellent reference for applied mathematicians and statisticians who are interested in a review of the topic.

An Introduction to Probability and Stochastic Processes

Author: James L. Melsa,Andrew P. Sage
Publisher: Courier Corporation
ISBN: 0486490998
Category: Mathematics
Page: 403
View: 6115
Detailed coverage of probability theory, random variables and their functions, stochastic processes, linear system response to stochastic processes, Gaussian and Markov processes, and stochastic differential equations. 1973 edition.

Stochastic Differential Equations

An Introduction with Applications
Author: Bernt Oksendal
Publisher: Springer Science & Business Media
ISBN: 3662025744
Category: Mathematics
Page: 188
View: 3946
From the reviews: "The author, a lucid mind with a fine pedagogical instinct, has written a splendid text. He starts out by stating six problems in the introduction in which stochastic differential equations play an essential role in the solution. Then, while developing stochastic calculus, he frequently returns to these problems and variants thereof and to many other problems to show how the theory works and to motivate the next step in the theoretical development. Needless to say, he restricts himself to stochastic integration with respect to Brownian motion. He is not hesitant to give some basic results without proof in order to leave room for "some more basic applications... The book can be an ideal text for a graduate course, but it is also recommended to analysts (in particular, those working in differential equations and deterministic dynamical systems and control) who wish to learn quickly what stochastic differential equations are all about." Acta Scientiarum Mathematicarum, Tom 50, 3-4, 1986#1 "The book is well written, gives a lot of nice applications of stochastic differential equation theory, and presents theory and applications of stochastic differential equations in a way which makes the book useful for mathematical seminars at a low level. (...) The book (will) really motivate scientists from non-mathematical fields to try to understand the usefulness of stochastic differential equations in their fields." Metrica#2

Introduction to Probability with R

Author: Kenneth Baclawski
Publisher: CRC Press
ISBN: 9781420065220
Category: Mathematics
Page: 384
View: 4477
Based on a popular course taught by the late Gian-Carlo Rota of MIT, with many new topics covered as well, Introduction to Probability with R presents R programs and animations to provide an intuitive yet rigorous understanding of how to model natural phenomena from a probabilistic point of view. Although the R programs are small in length, they are just as sophisticated and powerful as longer programs in other languages. This brevity makes it easy for students to become proficient in R. This calculus-based introduction organizes the material around key themes. One of the most important themes centers on viewing probability as a way to look at the world, helping students think and reason probabilistically. The text also shows how to combine and link stochastic processes to form more complex processes that are better models of natural phenomena. In addition, it presents a unified treatment of transforms, such as Laplace, Fourier, and z; the foundations of fundamental stochastic processes using entropy and information; and an introduction to Markov chains from various viewpoints. Each chapter includes a short biographical note about a contributor to probability theory, exercises, and selected answers. The book has an accompanying website with more information.

Introduction to Stochastic Processes

Author: Paul G. Hoel,Sidney C. Port,Charles J. Stone
Publisher: Waveland Press
ISBN: 1478608994
Category: Mathematics
Page: 203
View: 9518
An excellent introduction for computer scientists and electrical and electronics engineers who would like to have a good, basic understanding of stochastic processes! This clearly written book responds to the increasing interest in the study of systems that vary in time in a random manner. It presents an introductory account of some of the important topics in the theory of the mathematical models of such systems. The selected topics are conceptually interesting and have fruitful application in various branches of science and technology.

An Introduction to Sparse Stochastic Processes

Author: Michael Unser,Pouya D. Tafti
Publisher: Cambridge University Press
ISBN: 1107058546
Category: Computers
Page: 384
View: 484
A detailed guide to sparsity, providing a description of their transform-domain statistics and applying the models to practical algorithms.

An Introduction to Stochastic Process

Author: Adhir K. Basu
Publisher: CRC Press
ISBN: 9780849309915
Category: Mathematics
Page: 224
View: 9262
Designed for college mathematics students at all levels, this book grew from the author's lectures for advanced undergraduate courses at Canadian and United States universities, and from a postgraduate course at Calcutta University. It introduces discrete time Markov chain and second order stochastic analysis, and includes discussions of renewal theory, time series analysis, queuing theory, Brownian motions, and martingale theorems.

An Introduction to Order Statistics

Author: Mohammad Ahsanullah,Valery B Nevzorov,Mohammad Shakil
Publisher: Springer Science & Business Media
ISBN: 949121683X
Category: Mathematics
Page: 244
View: 5475
This book presents the theory of order statistics in a way, such that beginners can get easily acquainted with the very basis of the theory without having to work through heavily involved techniques. At the same time more experienced readers can check their level of understanding and polish their knowledge with certain details. This is achieved by, on the one hand, stating the basic formulae and providing many useful examples to illustrate the theoretical statements, while on the other hand an upgraded list of references will make it easier to gain insight into more specialized results. Thus this book is suitable for a readership working in statistics, actuarial mathematics, reliability engineering, meteorology, hydrology, business economics, sports analysis and many more.

Elementare Wahrscheinlichkeitstheorie und stochastische Prozesse

Author: Kai L. Chung
Publisher: Springer-Verlag
ISBN: 3642670334
Category: Mathematics
Page: 346
View: 6948
Aus den Besprechungen: "Unter den zahlreichen Einführungen in die Wahrscheinlichkeitsrechnung bildet dieses Buch eine erfreuliche Ausnahme. Der Stil einer lebendigen Vorlesung ist über Niederschrift und Übersetzung hinweg erhalten geblieben. In jedes Kapitel wird sehr anschaulich eingeführt. Sinn und Nützlichkeit der mathematischen Formulierungen werden den Lesern nahegebracht. Die wichtigsten Zusammenhänge sind als mathematische Sätze klar formuliert." #FREQUENZ#1

Introduction to Stochastic Dynamic Programming

Author: Sheldon M. Ross
Publisher: Academic Press
ISBN: 1483269094
Category: Mathematics
Page: 178
View: 411
Introduction to Stochastic Dynamic Programming presents the basic theory and examines the scope of applications of stochastic dynamic programming. The book begins with a chapter on various finite-stage models, illustrating the wide range of applications of stochastic dynamic programming. Subsequent chapters study infinite-stage models: discounting future returns, minimizing nonnegative costs, maximizing nonnegative returns, and maximizing the long-run average return. Each of these chapters first considers whether an optimal policy need exist—providing counterexamples where appropriate—and then presents methods for obtaining such policies when they do. In addition, general areas of application are presented. The final two chapters are concerned with more specialized models. These include stochastic scheduling models and a type of process known as a multiproject bandit. The mathematical prerequisites for this text are relatively few. No prior knowledge of dynamic programming is assumed and only a moderate familiarity with probability— including the use of conditional expectation—is necessary.


Einführung in die Wahrscheinlichkeitstheorie und Statistik
Author: Hans-Otto Georgii
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110386860
Category: Mathematics
Page: 448
View: 2465
Due to the extremely positive reception of this textbook, it is now being published in its 5th edition. The book provides an introduction to the key ideas and elements of probability theory and statistics. Stochastic concepts, models, and methods are highlighted through typical application examples, then analyzed theoretically and systematically explored.

An Introduction to Stochastic Processes and Nonequilibrium Statistical Physics

Author: Horacio S Wio,Roberto R Deza,Juan M López
Publisher: World Scientific Publishing Company
ISBN: 9814434639
Category: Science
Page: 336
View: 8693
This book aims to provide a compact and unified introduction to the most important aspects in the physics of non-equilibrium systems. It first introduces stochastic processes and some modern tools and concepts that have proved their usefulness to deal with non-equilibrium systems from a purely probabilistic angle. The aim is to show the important role played by fluctuations in far-from-equilibrium situations, where noise can promote order and organization, switching among non-equilibrium states, etc. The second part adopts a more historical perspective, retracing the first steps taken from the purely thermodynamic as well as from the kinetic points of view to depart (albeit slightly) from equilibrium. The third part revisits the path outlined in the first one, but now undertakes the mesoscopic description of extended systems, where new phenomena (patterns, long-range correlations, scaling far from equilibrium, etc.) are observed. This book is a revised and extended version of an earlier edition published in 1994. It includes topics of current research interest in far-from-equilibrium situations like noise-induced phenomena and free energy-like functionals, surface growth and roughening, etc. It can be used as an advanced textbook by graduate students in physics. It also covers topics of current interest in other disciplines and interdisciplinary approaches in engineering, biophysics, and economics, among others. The level of detail in the book is enough to capture the interest of the reader and facilitate the path to more learning by exploring the modern research literature provided. At the same time, the book is also complete enough to be self-contained for those readers who just need an overview of the subject.

An Introduction to Stochastic Modeling

Author: Howard M. Taylor,Samuel Karlin
Publisher: Gulf Professional Publishing
ISBN: 9780126848878
Category: Mathematics
Page: 631
View: 3213
Serving as the foundation for a one-semester course in stochastic processes for students familiar with elementary probability theory and calculus, Introduction to Stochastic Modeling, Third Edition, bridges the gap between basic probability and an intermediate level course in stochastic processes. The objectives of the text are to introduce students to the standard concepts and methods of stochastic modeling, to illustrate the rich diversity of applications of stochastic processes in the applied sciences, and to provide exercises in the application of simple stochastic analysis to realistic problems. * Realistic applications from a variety of disciplines integrated throughout the text * Plentiful, updated and more rigorous problems, including computer "challenges" * Revised end-of-chapter exercises sets-in all, 250 exercises with answers * New chapter on Brownian motion and related processes * Additional sections on Matingales and Poisson process * Solutions manual available to adopting instructors

Stochastic Orders and Applications

A Classified Bibliography
Author: Karl Mosler,Marco Scarsini
Publisher: Springer Science & Business Media
ISBN: 3642499724
Category: Mathematics
Page: 379
View: 1845
A bibliography on stochastic orderings. Was there a real need for it? In a time of reference databases as the MathSci or the Science Citation Index or the Social Science Citation Index the answer seems to be negative. The reason we think that this bibliog raphy might be of some use stems from the frustration that we, as workers in the field, have often experienced by finding similar results being discovered and proved over and over in different journals of different disciplines with different levels of mathematical so phistication and accuracy and most of the times without cross references. Of course it would be very unfair to blame an economist, say, for not knowing a result in mathematical physics, or vice versa, especially when the problems and the languages are so far apart that it is often difficult to recognize the analogies even after further scrutiny. We hope that collecting the references on this topic, regardless of the area of application, will be of some help, at least to pinpoint the problem. We use the term stochastic ordering in a broad sense to denote any ordering relation on a space of probability measures. Questions that can be related to the idea of stochastic orderings are as old as probability itself. Think for instance of the problem of comparing two gambles in order to decide which one is more favorable.

An Introduction to Mathematical Analysis for Economic Theory and Econometrics

Author: Dean Corbae,Maxwell B. Stinchcombe,Juraj Zeman
Publisher: Princeton University Press
ISBN: 1400833086
Category: Business & Economics
Page: 688
View: 2137
Providing an introduction to mathematical analysis as it applies to economic theory and econometrics, this book bridges the gap that has separated the teaching of basic mathematics for economics and the increasingly advanced mathematics demanded in economics research today. Dean Corbae, Maxwell B. Stinchcombe, and Juraj Zeman equip students with the knowledge of real and functional analysis and measure theory they need to read and do research in economic and econometric theory. Unlike other mathematics textbooks for economics, An Introduction to Mathematical Analysis for Economic Theory and Econometrics takes a unified approach to understanding basic and advanced spaces through the application of the Metric Completion Theorem. This is the concept by which, for example, the real numbers complete the rational numbers and measure spaces complete fields of measurable sets. Another of the book's unique features is its concentration on the mathematical foundations of econometrics. To illustrate difficult concepts, the authors use simple examples drawn from economic theory and econometrics. Accessible and rigorous, the book is self-contained, providing proofs of theorems and assuming only an undergraduate background in calculus and linear algebra. Begins with mathematical analysis and economic examples accessible to advanced undergraduates in order to build intuition for more complex analysis used by graduate students and researchers Takes a unified approach to understanding basic and advanced spaces of numbers through application of the Metric Completion Theorem Focuses on examples from econometrics to explain topics in measure theory

An Introduction to Quantum Stochastic Calculus

Author: K.R. Parthasarathy
Publisher: Springer Science & Business Media
ISBN: 3034805667
Category: Mathematics
Page: 290
View: 4377
An Introduction to Quantum Stochastic Calculus aims to deepen our understanding of the dynamics of systems subject to the laws of chance both from the classical and the quantum points of view and stimulate further research in their unification. This is probably the first systematic attempt to weave classical probability theory into the quantum framework and provides a wealth of interesting features: The origin of Ito’s correction formulae for Brownian motion and the Poisson process can be traced to commutation relations or, equivalently, the uncertainty principle. Quantum stochastic integration enables the possibility of seeing new relationships between fermion and boson fields. Many quantum dynamical semigroups as well as classical Markov semigroups are realised through unitary operator evolutions. The text is almost self-contained and requires only an elementary knowledge of operator theory and probability theory at the graduate level. - - - This is an excellent volume which will be a valuable companion both to those who are already active in the field and those who are new to it. Furthermore there are a large number of stimulating exercises scattered through the text which will be invaluable to students. (Mathematical Reviews) This monograph gives a systematic and self-contained introduction to the Fock space quantum stochastic calculus in its basic form (...) by making emphasis on the mathematical aspects of quantum formalism and its connections with classical probability and by extensive presentation of carefully selected functional analytic material. This makes the book very convenient for a reader with the probability-theoretic orientation, wishing to make acquaintance with wonders of the noncommutative probability, and, more specifcally, for a mathematics student studying this field. (Zentralblatt MATH) Elegantly written, with obvious appreciation for fine points of higher mathematics (...) most notable is [the] author's effort to weave classical probability theory into [a] quantum framework. (The American Mathematical Monthly)

An Introduction to Information Theory

Author: Fazlollah M. Reza
Publisher: Courier Corporation
ISBN: 0486158446
Category: Mathematics
Page: 528
View: 827
Graduate-level study for engineering students presents elements of modern probability theory, information theory, coding theory, more. Emphasis on sample space, random variables, capacity, etc. Many reference tables and extensive bibliography. 1961 edition.

Introduction to Stochastic Calculus Applied to Finance, Second Edition

Author: Damien Lamberton,Bernard Lapeyre
Publisher: CRC Press
ISBN: 142000994X
Category: Mathematics
Page: 254
View: 8952
Since the publication of the first edition of this book, the area of mathematical finance has grown rapidly, with financial analysts using more sophisticated mathematical concepts, such as stochastic integration, to describe the behavior of markets and to derive computing methods. Maintaining the lucid style of its popular predecessor, Introduction to Stochastic Calculus Applied to Finance, Second Edition incorporates some of these new techniques and concepts to provide an accessible, up-to-date initiation to the field. New to the Second Edition Complements on discrete models, including Rogers' approach to the fundamental theorem of asset pricing and super-replication in incomplete markets Discussions on local volatility, Dupire's formula, the change of numéraire techniques, forward measures, and the forward Libor model A new chapter on credit risk modeling An extension of the chapter on simulation with numerical experiments that illustrate variance reduction techniques and hedging strategies Additional exercises and problems Providing all of the necessary stochastic calculus theory, the authors cover many key finance topics, including martingales, arbitrage, option pricing, American and European options, the Black-Scholes model, optimal hedging, and the computer simulation of financial models. They succeed in producing a solid introduction to stochastic approaches used in the financial world.

An Introduction to Copulas

Author: Roger B. Nelsen
Publisher: Springer Science & Business Media
ISBN: 9780387986234
Category: Business & Economics
Page: 216
View: 2538
The study of copulas and their role in statistics is a new but vigorously growing field. In this book the student or practitioner of statistics and probability will find discussions of the fundamental properties of copulas and some of their primary applications. The applications include the study of dependence and measures of association, and the construction of families of bivariate distributions.