Applied Stochastic Control of Jump Diffusions


Author: Bernt Øksendal,Agnès Sulem
Publisher: Springer Science & Business Media
ISBN: 3540698264
Category: Mathematics
Page: 262
View: 8854
DOWNLOAD NOW »
Here is a rigorous introduction to the most important and useful solution methods of various types of stochastic control problems for jump diffusions and its applications. Discussion includes the dynamic programming method and the maximum principle method, and their relationship. The text emphasises real-world applications, primarily in finance. Results are illustrated by examples, with end-of-chapter exercises including complete solutions. The 2nd edition adds a chapter on optimal control of stochastic partial differential equations driven by Lévy processes, and a new section on optimal stopping with delayed information. Basic knowledge of stochastic analysis, measure theory and partial differential equations is assumed.

Applied Stochastic Control of Jump Diffusions


Author: Bernt Øksendal,Agnès Sulem-Bialobroda
Publisher: Springer Science & Business Media
ISBN: 3540264418
Category: Mathematics
Page: 214
View: 6693
DOWNLOAD NOW »
Here is a rigorous introduction to the most important and useful solution methods of various types of stochastic control problems for jump diffusions and its applications. Discussion includes the dynamic programming method and the maximum principle method, and their relationship. The text emphasises real-world applications, primarily in finance. Results are illustrated by examples, with end-of-chapter exercises including complete solutions. The 2nd edition adds a chapter on optimal control of stochastic partial differential equations driven by Lévy processes, and a new section on optimal stopping with delayed information. Basic knowledge of stochastic analysis, measure theory and partial differential equations is assumed.

Applied Stochastic Control of Jump Diffusions


Author: Bernt Øksendal,Agnes Sulem-Bialobroda
Publisher: Springer Science & Business Media
ISBN: 9783540140238
Category: Mathematics
Page: 214
View: 7145
DOWNLOAD NOW »
Here is a rigorous introduction to the most important and useful solution methods of various types of stochastic control problems for jump diffusions and its applications. Discussion includes the dynamic programming method and the maximum principle method, and their relationship. The text emphasises real-world applications, primarily in finance. Results are illustrated by examples, with end-of-chapter exercises including complete solutions. The 2nd edition adds a chapter on optimal control of stochastic partial differential equations driven by Lévy processes, and a new section on optimal stopping with delayed information. Basic knowledge of stochastic analysis, measure theory and partial differential equations is assumed.

Applied Stochastic Processes and Control for Jump Diffusions

Modeling, Analysis, and Computation
Author: Floyd B. Hanson
Publisher: SIAM
ISBN: 0898716330
Category: Mathematics
Page: 441
View: 8229
DOWNLOAD NOW »
A practical, entry-level text integrating the basic principles of applied mathematics and probability, and computational science.

Continuous-time Stochastic Control and Optimization with Financial Applications


Author: Huyên Pham
Publisher: Springer Science & Business Media
ISBN: 3540895000
Category: Mathematics
Page: 232
View: 6131
DOWNLOAD NOW »
Stochastic optimization problems arise in decision-making problems under uncertainty, and find various applications in economics and finance. On the other hand, problems in finance have recently led to new developments in the theory of stochastic control. This volume provides a systematic treatment of stochastic optimization problems applied to finance by presenting the different existing methods: dynamic programming, viscosity solutions, backward stochastic differential equations, and martingale duality methods. The theory is discussed in the context of recent developments in this field, with complete and detailed proofs, and is illustrated by means of concrete examples from the world of finance: portfolio allocation, option hedging, real options, optimal investment, etc. This book is directed towards graduate students and researchers in mathematical finance, and will also benefit applied mathematicians interested in financial applications and practitioners wishing to know more about the use of stochastic optimization methods in finance.

Stochastic Controls

Hamiltonian Systems and HJB Equations
Author: Jiongmin Yong,Xun Yu Zhou
Publisher: Springer Science & Business Media
ISBN: 1461214661
Category: Mathematics
Page: 439
View: 2633
DOWNLOAD NOW »
As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. * An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol lowing: (Q) What is the relationship betwccn the maximum principlc and dy namic programming in stochastic optimal controls? There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation.

Controlled Diffusion Processes


Author: N. V. Krylov
Publisher: Springer Science & Business Media
ISBN: 3540709142
Category: Science
Page: 310
View: 2037
DOWNLOAD NOW »
Stochastic control theory is a relatively young branch of mathematics. The beginning of its intensive development falls in the late 1950s and early 1960s. ~urin~ that period an extensive literature appeared on optimal stochastic control using the quadratic performance criterion (see references in Wonham [76]). At the same time, Girsanov [25] and Howard [26] made the first steps in constructing a general theory, based on Bellman's technique of dynamic programming, developed by him somewhat earlier [4]. Two types of engineering problems engendered two different parts of stochastic control theory. Problems of the first type are associated with multistep decision making in discrete time, and are treated in the theory of discrete stochastic dynamic programming. For more on this theory, we note in addition to the work of Howard and Bellman, mentioned above, the books by Derman [8], Mine and Osaki [55], and Dynkin and Yushkevich [12]. Another class of engineering problems which encouraged the development of the theory of stochastic control involves time continuous control of a dynamic system in the presence of random noise. The case where the system is described by a differential equation and the noise is modeled as a time continuous random process is the core of the optimal control theory of diffusion processes. This book deals with this latter theory.

Controlled Markov Processes and Viscosity Solutions


Author: Wendell H. Fleming,Halil Mete Soner
Publisher: Springer Science & Business Media
ISBN: 0387310711
Category: Mathematics
Page: 429
View: 971
DOWNLOAD NOW »
This book is an introduction to optimal stochastic control for continuous time Markov processes and the theory of viscosity solutions. It covers dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. New chapters in this second edition introduce the role of stochastic optimal control in portfolio optimization and in pricing derivatives in incomplete markets and two-controller, zero-sum differential games.

Dynamic Optimization, Second Edition

The Calculus of Variations and Optimal Control in Economics and Management
Author: Morton I. Kamien,Nancy L. Schwartz
Publisher: Courier Corporation
ISBN: 0486310280
Category: Mathematics
Page: 400
View: 4427
DOWNLOAD NOW »
Since its initial publication, this text has defined courses in dynamic optimization taught to economics and management science students. The two-part treatment covers the calculus of variations and optimal control. 1998 edition.

Stochastic Differential Equations

An Introduction with Applications
Author: Bernt Oksendal
Publisher: Springer Science & Business Media
ISBN: 3662025744
Category: Mathematics
Page: 188
View: 403
DOWNLOAD NOW »
From the reviews: "The author, a lucid mind with a fine pedagogical instinct, has written a splendid text. He starts out by stating six problems in the introduction in which stochastic differential equations play an essential role in the solution. Then, while developing stochastic calculus, he frequently returns to these problems and variants thereof and to many other problems to show how the theory works and to motivate the next step in the theoretical development. Needless to say, he restricts himself to stochastic integration with respect to Brownian motion. He is not hesitant to give some basic results without proof in order to leave room for "some more basic applications... The book can be an ideal text for a graduate course, but it is also recommended to analysts (in particular, those working in differential equations and deterministic dynamical systems and control) who wish to learn quickly what stochastic differential equations are all about." Acta Scientiarum Mathematicarum, Tom 50, 3-4, 1986#1 "The book is well written, gives a lot of nice applications of stochastic differential equation theory, and presents theory and applications of stochastic differential equations in a way which makes the book useful for mathematical seminars at a low level. (...) The book (will) really motivate scientists from non-mathematical fields to try to understand the usefulness of stochastic differential equations in their fields." Metrica#2

Numerical Solution of Stochastic Differential Equations with Jumps in Finance


Author: Eckhard Platen,Nicola Bruti-Liberati
Publisher: Springer Science & Business Media
ISBN: 364213694X
Category: Mathematics
Page: 856
View: 7801
DOWNLOAD NOW »
In financial and actuarial modeling and other areas of application, stochastic differential equations with jumps have been employed to describe the dynamics of various state variables. The numerical solution of such equations is more complex than that of those only driven by Wiener processes, described in Kloeden & Platen: Numerical Solution of Stochastic Differential Equations (1992). The present monograph builds on the above-mentioned work and provides an introduction to stochastic differential equations with jumps, in both theory and application, emphasizing the numerical methods needed to solve such equations. It presents many new results on higher-order methods for scenario and Monte Carlo simulation, including implicit, predictor corrector, extrapolation, Markov chain and variance reduction methods, stressing the importance of their numerical stability. Furthermore, it includes chapters on exact simulation, estimation and filtering. Besides serving as a basic text on quantitative methods, it offers ready access to a large number of potential research problems in an area that is widely applicable and rapidly expanding. Finance is chosen as the area of application because much of the recent research on stochastic numerical methods has been driven by challenges in quantitative finance. Moreover, the volume introduces readers to the modern benchmark approach that provides a general framework for modeling in finance and insurance beyond the standard risk-neutral approach. It requires undergraduate background in mathematical or quantitative methods, is accessible to a broad readership, including those who are only seeking numerical recipes, and includes exercises that help the reader develop a deeper understanding of the underlying mathematics.

Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives


Author: Jean-Pierre Fouque,George Papanicolaou,Ronnie Sircar,Knut Sølna
Publisher: Cambridge University Press
ISBN: 113950245X
Category: Mathematics
Page: N.A
View: 1142
DOWNLOAD NOW »
Building upon the ideas introduced in their previous book, Derivatives in Financial Markets with Stochastic Volatility, the authors study the pricing and hedging of financial derivatives under stochastic volatility in equity, interest-rate, and credit markets. They present and analyze multiscale stochastic volatility models and asymptotic approximations. These can be used in equity markets, for instance, to link the prices of path-dependent exotic instruments to market implied volatilities. The methods are also used for interest rate and credit derivatives. Other applications considered include variance-reduction techniques, portfolio optimization, forward-looking estimation of CAPM 'beta', and the Heston model and generalizations of it. 'Off-the-shelf' formulas and calibration tools are provided to ease the transition for practitioners who adopt this new method. The attention to detail and explicit presentation make this also an excellent text for a graduate course in financial and applied mathematics.

Numerical Methods for Stochastic Control Problems in Continuous Time


Author: Harold Kushner,Paul G. Dupuis
Publisher: Springer Science & Business Media
ISBN: 1468404415
Category: Science
Page: 439
View: 2645
DOWNLOAD NOW »
This book is concerned with numerical methods for stochastic control and optimal stochastic control problems. The random process models of the controlled or uncontrolled stochastic systems are either diffusions or jump diffusions. Stochastic control is a very active area of research and new prob lem formulations and sometimes surprising applications appear regularly. We have chosen forms of the models which cover the great bulk of the for mulations of the continuous time stochastic control problems which have appeared to date. The standard formats are covered, but much emphasis is given to the newer and less well known formulations. The controlled process might be either stopped or absorbed on leaving a constraint set or upon first hitting a target set, or it might be reflected or "projected" from the boundary of a constraining set. In some of the more recent applications of the reflecting boundary problem, for example the so-called heavy traffic approximation problems, the directions of reflection are actually discontin uous. In general, the control might be representable as a bounded function or it might be of the so-called impulsive or singular control types. Both the "drift" and the "variance" might be controlled. The cost functions might be any of the standard types: Discounted, stopped on first exit from a set, finite time, optimal stopping, average cost per unit time over the infinite time interval, and so forth.

Applied Stochastic Processes


Author: Mario Lefebvre
Publisher: Springer Science & Business Media
ISBN: 9780387489766
Category: Mathematics
Page: 382
View: 9215
DOWNLOAD NOW »
This book uses a distinctly applied framework to present the most important topics in stochastic processes, including Gaussian and Markovian processes, Markov Chains, Poisson processes, Brownian motion and queueing theory. The book also examines in detail special diffusion processes, with implications for finance, various generalizations of Poisson processes, and renewal processes. It contains numerous examples and approximately 350 advanced problems that reinforce both concepts and applications. Entertaining mini-biographies of mathematicians give an enriching historical context. The book includes statistical tables and solutions to the even-numbered problems at the end.

Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE


Author: Nizar Touzi
Publisher: Springer Science & Business Media
ISBN: 1461442869
Category: Mathematics
Page: 214
View: 7602
DOWNLOAD NOW »
​This book collects some recent developments in stochastic control theory with applications to financial mathematics. We first address standard stochastic control problems from the viewpoint of the recently developed weak dynamic programming principle. A special emphasis is put on the regularity issues and, in particular, on the behavior of the value function near the boundary. We then provide a quick review of the main tools from viscosity solutions which allow to overcome all regularity problems. We next address the class of stochastic target problems which extends in a nontrivial way the standard stochastic control problems. Here the theory of viscosity solutions plays a crucial role in the derivation of the dynamic programming equation as the infinitesimal counterpart of the corresponding geometric dynamic programming equation. The various developments of this theory have been stimulated by applications in finance and by relevant connections with geometric flows. Namely, the second order extension was motivated by illiquidity modeling, and the controlled loss version was introduced following the problem of quantile hedging. The third part specializes to an overview of Backward stochastic differential equations, and their extensions to the quadratic case.​

Numerical Optimization

Theoretical and Practical Aspects
Author: Joseph-Frédéric Bonnans,Jean Charles Gilbert,Claude Lemarechal,Claudia A. Sagastizábal
Publisher: Springer Science & Business Media
ISBN: 3662050781
Category: Mathematics
Page: 423
View: 7362
DOWNLOAD NOW »
This book starts with illustrations of the ubiquitous character of optimization, and describes numerical algorithms in a tutorial way. It covers fundamental algorithms as well as more specialized and advanced topics for unconstrained and constrained problems. This new edition contains computational exercises in the form of case studies which help understanding optimization methods beyond their theoretical description when coming to actual implementation.

Parameter Estimation in Stochastic Differential Equations


Author: Jaya P. N. Bishwal
Publisher: Springer
ISBN: 3540744487
Category: Mathematics
Page: 268
View: 2179
DOWNLOAD NOW »
Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modeling complex phenomena. The subject has attracted researchers from several areas of mathematics. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods.

Fluctuations of Lévy Processes with Applications

Introductory Lectures
Author: Andreas Kyprianou
Publisher: Springer Science & Business Media
ISBN: 3642376320
Category: Mathematics
Page: 455
View: 5253
DOWNLOAD NOW »
Lévy processes are the natural continuous-time analogue of random walks and form a rich class of stochastic processes around which a robust mathematical theory exists. Their application appears in the theory of many areas of classical and modern stochastic processes including storage models, renewal processes, insurance risk models, optimal stopping problems, mathematical finance, continuous-state branching processes and positive self-similar Markov processes. This textbook is based on a series of graduate courses concerning the theory and application of Lévy processes from the perspective of their path fluctuations. Central to the presentation is the decomposition of paths in terms of excursions from the running maximum as well as an understanding of short- and long-term behaviour. The book aims to be mathematically rigorous while still providing an intuitive feel for underlying principles. The results and applications often focus on the case of Lévy processes with jumps in only one direction, for which recent theoretical advances have yielded a higher degree of mathematical tractability. The second edition additionally addresses recent developments in the potential analysis of subordinators, Wiener-Hopf theory, the theory of scale functions and their application to ruin theory, as well as including an extensive overview of the classical and modern theory of positive self-similar Markov processes. Each chapter has a comprehensive set of exercises.

Mean Field Simulation for Monte Carlo Integration


Author: Pierre Del Moral
Publisher: CRC Press
ISBN: 146650417X
Category: Mathematics
Page: 626
View: 2144
DOWNLOAD NOW »
In the last three decades, there has been a dramatic increase in the use of interacting particle methods as a powerful tool in real-world applications of Monte Carlo simulation in computational physics, population biology, computer sciences, and statistical machine learning. Ideally suited to parallel and distributed computation, these advanced particle algorithms include nonlinear interacting jump diffusions; quantum, diffusion, and resampled Monte Carlo methods; Feynman-Kac particle models; genetic and evolutionary algorithms; sequential Monte Carlo methods; adaptive and interacting Markov chain Monte Carlo models; bootstrapping methods; ensemble Kalman filters; and interacting particle filters. Mean Field Simulation for Monte Carlo Integration presents the first comprehensive and modern mathematical treatment of mean field particle simulation models and interdisciplinary research topics, including interacting jumps and McKean-Vlasov processes, sequential Monte Carlo methodologies, genetic particle algorithms, genealogical tree-based algorithms, and quantum and diffusion Monte Carlo methods. Along with covering refined convergence analysis on nonlinear Markov chain models, the author discusses applications related to parameter estimation in hidden Markov chain models, stochastic optimization, nonlinear filtering and multiple target tracking, stochastic optimization, calibration and uncertainty propagations in numerical codes, rare event simulation, financial mathematics, and free energy and quasi-invariant measures arising in computational physics and population biology. This book shows how mean field particle simulation has revolutionized the field of Monte Carlo integration and stochastic algorithms. It will help theoretical probability researchers, applied statisticians, biologists, statistical physicists, and computer scientists work better across their own disciplinary boundaries.

Functional Analysis, Sobolev Spaces and Partial Differential Equations


Author: Haim Brezis
Publisher: Springer Science & Business Media
ISBN: 0387709142
Category: Mathematics
Page: 600
View: 2468
DOWNLOAD NOW »
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.