Computational Ocean Acoustics

Author: Finn B. Jensen,William A. Kuperman,Michael B. Porter,Henrik Schmidt
Publisher: Springer Science & Business Media
ISBN: 9781441986788
Category: Science
Page: 794
View: 5282
Senior level/graduate level text/reference presenting state-of-the- art numerical techniques to solve the wave equation in heterogeneous fluid-solid media. Numerical models have become standard research tools in acoustic laboratories, and thus computational acoustics is becoming an increasingly important branch of ocean acoustic science. The first edition of this successful book, written by the recognized leaders of the field, was the first to present a comprehensive and modern introduction to computational ocean acoustics accessible to students. This revision, with 100 additional pages, completely updates the material in the first edition and includes new models based on current research. It includes problems and solutions in every chapter, making the book more useful in teaching (the first edition had a separate solutions manual). The book is intended for graduate and advanced undergraduate students of acoustics, geology and geophysics, applied mathematics, ocean engineering or as a reference in computational methods courses, as well as professionals in these fields, particularly those working in government (especially Navy) and industry labs engaged in the development or use of propagating models.

Fundamentals of Ocean Acoustics

Author: Leonid M. Brekhovskikh,Yury P. Lysanov
Publisher: Springer Science & Business Media
ISBN: 3662073285
Category: Science
Page: 270
View: 8868
As man turns his attention from the overcrowded continents of this planet and explores the spaciousness of the ocean, the applications of ocean acoustics become increasingly numerous and important. This book pro- vides an up-to-date introduction to the theory of sound propagation in the ocean, with much new material having been added throughout the second edition. It includes both ray and wave treatments and considerable attention is paid to stochastic problems such as the scattering of sound at rough surfaces and random inhomogeneties. An introductory chapter that discusses the basic experimental data complements the following theoretical chapters.

Underwater Acoustics

Analysis, Design and Performance of Sonar
Author: Richard P. Hodges
Publisher: John Wiley & Sons
ISBN: 1119957494
Category: Science
Page: 366
View: 9728
Offering complete and comprehensive coverage of modern sonar spectrum system analysis, Underwater Acoustics: Analysis, Design and Performance of Sonar provides a state-of-the-art introduction to the subject and has been carefully structured to offer a much-needed update to the classic text by Urick. Expanded to included computational approaches to the topic, this book treads the line between the highly theoretical and mathematical texts and the more populist, non-mathematical books that characterize the existing literature in the field. The author compares and contrasts different techniques for sonar design, analysis and performance prediction and includes key experimental and theoretical results, pointing the reader towards further detail with extensive references. Practitioners in the field of sonar design, analysis and performance prediction as well as graduate students and researchers will appreciate this new reference as an invaluable and timely contribution to the field. Chapters include the sonar equation, radiated, self and ambient noise, active sonar sources, transmission loss, reverberation, transducers, active target strength, statistical detection theory, false alarms, contacts and targets, variability and uncertainty, modelling detections and tactical decision aids, cumulative probability of detection, tracking target motion analysis and localization, and design and evaluation of sonars

Ocean Ambient Noise

Measurement and Theory
Author: William M. Carey,Richard B. Evans
Publisher: Springer Science & Business Media
ISBN: 9781441978325
Category: Science
Page: 266
View: 1817
This monograph develops the theory of noise mechanisms and measurements, and describes general noise characteristics and computational methods. The vast ambient noise literature is concisely summarized using theory combined with key representative results. The air sea boundary interaction zone is described in terms of nondimensional variables requisite for future experiments. Noise field coherency, rare directional measurements, and unique basin scale computations and methods are presented. The use of satellite measurements in these basin scale models is demonstrated. A series of appendices provides in-depth mathematical treatments which will be of interest to graduate students and active researchers.

Principles of Marine Bioacoustics

Author: Whitlow W. L. Au,Mardi C. Hastings
Publisher: Springer Science & Business Media
ISBN: 9780387783659
Category: Science
Page: 680
View: 5453
Humans have always been fascinated by marine life, from extremely small diatoms to the largest mammal that inhabits our planet, the blue whale. However, studying marine life in the ocean is an extremely difficult propo- tion because an ocean environment is not only vast but also opaque to most instruments and can be a hostile environment in which to perform expe- ments and research. The use of acoustics is one way to effectively study animal life in the ocean. Acoustic energy propagates in water more efficiently than almost any form of energy and can be utilized by animals for a variety of purposes and also by scientists interested in studying their behavior and natural history. However, underwater acoustics have traditionally been in the domain of physicists, engineers and mathematicians. Studying the natural history of animals is in the domain of biologists and physiologists. Und- standing behavior of animals has traditionally involved psychologists and zoologists. In short, marine bioacoustics is and will continue to be a diverse discipline involving investigators from a variety of backgrounds, with very different knowledge and skill sets. The inherent inter-disciplinary nature of marine bioacoustics presents a large challenge in writing a single text that would be meaningful to various investigators and students interested in this field. Yet we have embarked on this challenge to produce a volume that would be helpful to not only beginning investigators but to seasoned researchers.

Fundamentals of Acoustical Oceanography

Author: Herman Medwin,Clarence S. Clay
Publisher: Academic Press
ISBN: 9780080532165
Category: Science
Page: 712
View: 6287
The developments in the field of ocean acoustics over recent years make this book an important reference for specialists in acoustics, oceanography, marine biology, and related fields. Fundamentals of Acoustical Oceanography also encourages a new generation of scientists, engineers, and entrepreneurs to apply the modern methods of acoustical physics to probe the unknown sea. The book is an authoritative, modern text with examples and exercises. It contains techniques to solve the direct problems, solutions of inverse problems, and an extensive bibliography from the earliest use of sound in the sea to present references. Written by internationally recognized scientists, the book provides background to measure ocean parameters and processes, find life and objects in the sea, communicate underwater, and survey the boundaries of the sea. Fundamentals of Acoustical Oceanography explains principles of underwater sound propagation, and describes how both actively probing sonars and passively listening hydrophones can reveal what the eye cannot see over vast ranges of the turbid ocean. This book demonstrates how to use acoustical remote sensing, variations in sound transmission, in situ acoustical measurements, and computer and laboratory models to identify the physical and biological parameters and processes in the sea. * Offers an integrated, modern approach to passive and active underwater acoustics * Contains many examples of laboratory scale models of ocean-acoustic environments, as well as descriptions of experiments at sea * Covers remote sensing of marine life and the seafloor * Includes signal processing of ocean sounds, physical and biological noises at sea, and inversions * resents sound sources, receivers, and calibration * Explains high intensities; explosive waves, parametric sources, cavitation, shock waves, and streaming * Covers microbubbles from breaking waves, rainfall, dispersion, and attenuation * Describes sound propagation along ray paths and caustics * Presents sound transmissions and normal mode methods in ocean waveguides

Ocean and Seabed Acoustics

A Theory of Wave Propagation
Author: George V. Frisk
Publisher: Pearson Education
ISBN: 0132441543
Category: Technology & Engineering
Page: 300
View: 8632
Respected scientist and educator George V. Frisk draws on his extensive professional experience to demonstrate how the ocean environment provides an excellent setting in which to display general principles of wave propagation that are also applicable to other areas of wave physics. Ocean and Seabed Acoustics proceeds with a derivation of elementary solutions to the wave equation in free space and then progressively addresses problems of increasing complexity. This book concludes with a discussion of acoustic wave propagation due to a point source in an inhomogeneous waveguide with lossy boundaries.

Listening in the Ocean

Author: Whitlow W. L. Au,Marc O. Lammers
Publisher: Springer
ISBN: 1493931768
Category: Science
Page: 416
View: 5060
This title brings to light the discoveries and insights into the lives of many marine species made possible over the last decade by passive acoustic recorders (PAR). Pop-ups, ARF, HARP, EAR, Bprobe, C-POD Atag, and Dtag are the acronyms of some of the many PARs that have changed our understanding of how marine animals live and strive in the ocean. Various types of PARs are used by different investigators in different areas of the world. These recorders have accumulated copious amounts of very important data, unveiling previously unknown information about large marine animals. Temporal, seasonal and spatial distribution patterns have been uncovered for many marine species. There have been many discoveries, new understandings and insights into how these animals live in and utilize the ocean and the importance of acoustics in their lives. Listening Within the Ocean summarizes these important discoveries, providing both a valuable resource for researchers and enjoyable reading for non-professionals interested in marine life.

Analysis, Synthesis, and Perception of Musical Sounds

The Sound of Music
Author: James Beauchamp
Publisher: Springer Science & Business Media
ISBN: 038732576X
Category: Science
Page: 328
View: 8565
This book contains a complete and accurate mathematical treatment of the sounds of music with an emphasis on musical timbre. The book spans the range from tutorial introduction to advanced research and application to speculative assessment of its various techniques. All the contributors use a generalized additive sine wave model for describing musical timbre which gives a conceptual unity, but is of sufficient utility to be adapted to many different tasks.

Transducers and Arrays for Underwater Sound

Author: John L. Butler,Charles H. Sherman
Publisher: Springer
ISBN: 3319390449
Category: Science
Page: 716
View: 8029
This improved and updated second edition covers the theory, development, and design of electro-acoustic transducers for underwater applications. This highly regarded text discusses the basics of piezoelectric and magnetostrictive transducers that are currently being used as well as promising new designs. It presents the basic acoustics as well as the specific acoustics data needed in transducer design and evaluation. A broad range of designs of projectors and hydrophones are described in detail along with methods of modeling, evaluation, and measurement. Analysis of projector and hydrophone transducer arrays, including the effects of mutual radiation impedance and numerical models for elements and arrays, are also covered. The book includes new advances in transducer design and transducer materials and has been completely reorganized to be suitable for use as a textbook, as well as a reference or handbook. The new edition contains corrections to the first edition, end-of-chapter exercises, and solutions to selected exercises. Each chapter includes a short introduction, end-of-chapter summary, and an extensive reference list offering the reader more detailed information and historical context. A glossary of key terms is also included at the end.

Applications of Digital Signal Processing to Audio and Acoustics

Author: Mark Kahrs,Karlheinz Brandenburg
Publisher: Springer Science & Business Media
ISBN: 030647042X
Category: Technology & Engineering
Page: 548
View: 5398
Karlheinz Brandenburg and Mark Kahrs With the advent of multimedia, digital signal processing (DSP) of sound has emerged from the shadow of bandwidth limited speech processing. Today, the main appli cations of audio DSP are high quality audio coding and the digital generation and manipulation of music signals. They share common research topics including percep tual measurement techniques and analysis/synthesis methods. Smaller but nonetheless very important topics are hearing aids using signal processing technology and hardware architectures for digital signal processing of audio. In all these areas the last decade has seen a significant amount of application oriented research. The topics covered here coincide with the topics covered in the biannual work shop on “Applications of Signal Processing to Audio and Acoustics”. This event is sponsored by the IEEE Signal Processing Society (Technical Committee on Audio and Electroacoustics) and takes place at Mohonk Mountain House in New Paltz, New York. A short overview of each chapter will illustrate the wide variety of technical material presented in the chapters of this book. John Beerends: Perceptual Measurement Techniques. The advent of perceptual measurement techniques is a byproduct of the advent of digital coding for both speech and high quality audio signals. Traditional measurement schemes are bad estimates for the subjective quality after digital coding/decoding. Listening tests are subject to sta tistical uncertainties and the basic question of repeatability in a different environment.

Applied Underwater Acoustics

Leif Bjørnø
Author: Thomas Neighbors,David Bradley
Publisher: Elsevier
ISBN: 0128112476
Category: Science
Page: 980
View: 6250
Applied Underwater Acoustics meets the needs of scientists and engineers working in underwater acoustics and graduate students solving problems in, and preparing theses on, topics in underwater acoustics. The book is structured to provide the basis for rapidly assimilating the essential underwater acoustic knowledge base for practical application to daily research and analysis. Each chapter of the book is self-supporting and focuses on a single topic and its relation to underwater acoustics. The chapters start with a brief description of the topic’s physical background, necessary definitions, and a short description of the applications, along with a roadmap to the chapter. The subtopics covered within individual subchapters include most frequently used equations that describe the topic. Equations are not derived, rather, assumptions behind equations and limitations on the applications of each equation are emphasized. Figures, tables, and illustrations related to the sub-topic are presented in an easy-to-use manner, and examples on the use of the equations, including appropriate figures and tables are also included. Provides a complete and up-to-date treatment of all major subjects of underwater acoustics Presents chapters written by recognized experts in their individual field Covers the fundamental knowledge scientists and engineers need to solve problems in underwater acoustics Illuminates, in shorter sub-chapters, the modern applications of underwater acoustics that are described in worked examples Demands no prior knowledge of underwater acoustics, and the physical principles and mathematics are designed to be readily understood by scientists, engineers, and graduate students of underwater acoustics Includes a comprehensive list of literature references for each chapter

Underwater Acoustic System Analysis

Author: William S. Burdic
Publisher: Peninsula Pub
Category: Science
Page: 466
View: 9681
Underwater Aacoustic System Analysis provides a comprehensive exploration of underwater acoustics, acoustic signal generation, and acoustic signal processing for the practicing systems analyst and systems engineer. This second edition, first published in 1991, contains all the valuable information in the earlier edition plus a detailed discussion of of adaptive processing as applied to spatial filtering. Highlights of the book are: * Generation and propagation of compressional acoustic acoustic waves in the ocean * narrowband signatures of surface ships caused by cavitating propeller blades and diesel engine firing * Optimization of signal-to-noise ratio and spatial reslution in the presence of multiple acoustic signals * Ambient noise in the ocean, and * Examples of sytem performance analysis

Fundamentals of General Linear Acoustics

Author: Finn Jacobsen,Peter Moller Juhl
Publisher: John Wiley & Sons
ISBN: 1118636171
Category: Technology & Engineering
Page: 304
View: 7818
Acoustics deals with the production, control, transmission, reception, and effects of sound. Owing to acoustics being an interdisciplinary field, this book is intended to be equally accessible to readers from a range of backgrounds including electrical engineering, physics and mechanical engineering. This book introduces the fundamentals of acoustic wave motion. It addresses in a clear and systematic way some of the most difficult parts of acoustics for beginners, such as the widely different approximations due to the wide frequency range, the apparently arbitrary choice between the use of analytical solutions to the wave equation with boundary conditions, and the fundamentally different energy-based considerations used in noise control. As a result, it provides readers with a self-contained source of information on acoustics which can be used for self-study or as a graduate course text. Key features: Places an emphasis on detailed derivations based on the fundamental laws of physics and interpretations of the resulting formulas. Avoids, where possible, electrical and mechanical equivalent circuits, so as to make it accessible to readers with different backgrounds. Introduces duct acoustics, sound in enclosures, and sound radiation and scattering. Contains a set of appendices which includes material on signal analysis and processing as these tools are essential for the modern acoustician.

Advanced Analytic Methods in Applied Mathematics, Science, and Engineering

Author: Hung Cheng
Publisher: Luban Press
ISBN: 9780975862513
Category: Mathematics
Page: 490
View: 6776

Underwater Acoustic Modeling and Simulation, Fifth Edition

Author: Paul C. Etter
Publisher: CRC Press
ISBN: 1351679716
Category: Technology & Engineering
Page: 608
View: 6779
This newest edition adds new material to all chapters, especially in mathematical propagation models and special applications and inverse techniques. It has updated environmental-acoustic data in companion tables and core summary tables with the latest underwater acoustic propagation, noise, reverberation, and sonar performance models. Additionally, the text discusses new applications including underwater acoustic networks and channel models, marine-hydrokinetic energy devices, and simulation of anthropogenic sound sources. It further includes instructive case studies to demonstrate applications in sonar simulation.

Geophysical Data Analysis

Discrete Inverse Theory
Author: William Menke
Publisher: Academic Press
ISBN: 0128135565
Category: Science
Page: 352
View: 9141
Geophysical Data Analysis: Diverse Inverse Theory, Fourth Edition is a revised and expanded introduction to inverse theory and tomography as it is practiced by geophysicists. It demonstrates the methods needed to analyze a broad spectrum of geophysical datasets, with special attention to those methods that generate images of the earth. Data analysis can be a mathematically complex activity, but the treatment in this volume is carefully designed to emphasize those mathematical techniques that readers will find the most familiar and to systematically introduce less-familiar ones. Using problems and case studies, along with MATLAB computer code and summaries of methods, the book provides data scientists and engineers in geophysics with the tools necessary to understand and apply mathematical techniques and inverse theory. Includes material on probability, including Bayesian influence, probability density function and metropolis algorithm Offers detailed discussion of the application of inverse theory to tectonic, gravitational and geomagnetic studies Contains numerous examples, color figures and end-of-chapter homework problems to help readers explore and further understand presented ideas Includes MATLAB examples and problem sets Updated and refined throughout to bring the text in line with current understanding and improved examples and case studies Expanded sections to cover material, such as second-derivation smoothing and chi-squared tests not covered in the previous edition

Springer Handbook of Ocean Engineering

Author: Manhar R. Dhanak,Nikolas I. Xiros
Publisher: Springer
ISBN: 3319166492
Category: Technology & Engineering
Page: 1345
View: 6327
This handbook is the definitive reference for the interdisciplinary field that is ocean engineering. It integrates the coverage of fundamental and applied material and encompasses a diverse spectrum of systems, concepts and operations in the maritime environment, as well as providing a comprehensive update on contemporary, leading-edge ocean technologies. Coverage includes an overview on the fundamentals of ocean science, ocean signals and instrumentation, coastal structures, developments in ocean energy technologies and ocean vehicles and automation. It aims at practitioners in a range of offshore industries and naval establishments as well as academic researchers and graduate students in ocean, coastal, offshore and marine engineering and naval architecture. The Springer Handbook of Ocean Engineering is organized in five parts: Part A: Fundamentals, Part B: Autonomous Ocean Vehicles, Subsystems and Control, Part C: Coastal Design, Part D: Offshore Technologies, Part E: Energy Conversion

The Foundations of Acoustics

Basic Mathematics and Basic Acoustics
Author: Eugen Skudrzyk
Publisher: Springer Science & Business Media
ISBN: 3709182557
Category: Science
Page: 790
View: 1861
Research and scientific progress are based upqn intuition coordinated with a wide theoretical knowledge, experimental skill, and a realistic sense of the limitations of technology. Only a deep insight into physical phenomena will supply the necessary skills to handle the problems that arise in acoustics. The acoustician today needs to be well acquainted with mathematics, dynamics, hydrodynamics, and physics; he also needs a good knowledge of statistics, signal processing, electrical theory, and of many other specialized subjects. Acquiring this background is a laborious task and would require the study of many different books. It is the goal of this volume to present this background in as thorough and readable a manner as possible so that the reader may turn to specialized publications or chapters of other books for further information without having to start at the preliminaries. In trying to accomplish this goal, mathematics serves only as a tool; the better our understanding of a physical phenomenon, the less mathematics is needed and the shorter and more concise are our computa tions. A word about the choice of subjects for this volume will be helpful to the reader. Even scientists of high standing are frequently not acquainted with the fundamentals needed in the field of acoustics. Chapters I to IX are devoted to these fundamentals. After studying Chapter I, which dis cusses the units and their relationships, the reader should have no difficulty converting from one system of units to any other.

Underwater Acoustic Digital Signal Processing and Communication Systems

Author: Robert Istepanian,Milica Stojanovic
Publisher: Springer Science & Business Media
ISBN: 1475736177
Category: Technology & Engineering
Page: 278
View: 9532
Underwater acoustic digital signal processing and communications is an area of applied research that has witnessed major advances over the past decade. Rapid developments in this area were made possible by the use of powerful digital signal processors (DSPs) whose speed, computational power and portability allowed efficient implementation of complex signal processing algorithms and experimental demonstration of their performance in a variety of underwater environments. The early results served as a motivation for the development of new and improved signal processing methods for underwater applications, which today range from classical of autonomous underwater vehicles and sonar signal processing, to remote control underwater wireless communications. This book presents the diverse areas of underwater acoustic signal processing and communication systems through a collection of contributions from prominent researchers in these areas. Their results, both new and those published over the past few years, have been assembled to provide what we hope is a comprehensive overview of the recent developments in the field. The book is intended for a general audience of researchers, engineers and students working in the areas of underwater acoustic signal processing. It requires the reader to have a basic understanding of the digital signal processing concepts. Each topic is treated from a theoretical perspective, followed by practical implementation details. We hope that the book can serve both as a study text and an academic reference.