Python for Data Analysis

Data Wrangling with Pandas, NumPy, and IPython
Author: Wes McKinney
Publisher: "O'Reilly Media, Inc."
ISBN: 1491957611
Category: Computers
Page: 550
View: 6202
DOWNLOAD NOW »
Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples

Big Data Analytics with Spark

A Practitioner's Guide to Using Spark for Large Scale Data Analysis
Author: Mohammed Guller
Publisher: Apress
ISBN: 1484209648
Category: Computers
Page: 277
View: 5913
DOWNLOAD NOW »
Big Data Analytics with Spark is a step-by-step guide for learning Spark, which is an open-source fast and general-purpose cluster computing framework for large-scale data analysis. You will learn how to use Spark for different types of big data analytics projects, including batch, interactive, graph, and stream data analysis as well as machine learning. In addition, this book will help you become a much sought-after Spark expert. Spark is one of the hottest Big Data technologies. The amount of data generated today by devices, applications and users is exploding. Therefore, there is a critical need for tools that can analyze large-scale data and unlock value from it. Spark is a powerful technology that meets that need. You can, for example, use Spark to perform low latency computations through the use of efficient caching and iterative algorithms; leverage the features of its shell for easy and interactive Data analysis; employ its fast batch processing and low latency features to process your real time data streams and so on. As a result, adoption of Spark is rapidly growing and is replacing Hadoop MapReduce as the technology of choice for big data analytics. This book provides an introduction to Spark and related big-data technologies. It covers Spark core and its add-on libraries, including Spark SQL, Spark Streaming, GraphX, and MLlib. Big Data Analytics with Spark is therefore written for busy professionals who prefer learning a new technology from a consolidated source instead of spending countless hours on the Internet trying to pick bits and pieces from different sources. The book also provides a chapter on Scala, the hottest functional programming language, and the program that underlies Spark. You’ll learn the basics of functional programming in Scala, so that you can write Spark applications in it. What's more, Big Data Analytics with Spark provides an introduction to other big data technologies that are commonly used along with Spark, like Hive, Avro, Kafka and so on. So the book is self-sufficient; all the technologies that you need to know to use Spark are covered. The only thing that you are expected to know is programming in any language. There is a critical shortage of people with big data expertise, so companies are willing to pay top dollar for people with skills in areas like Spark and Scala. So reading this book and absorbing its principles will provide a boost—possibly a big boost—to your career.

Scala and Spark for Big Data Analytics

Explore the concepts of functional programming, data streaming, and machine learning
Author: Md. Rezaul Karim,Sridhar Alla
Publisher: Packt Publishing Ltd
ISBN: 1783550503
Category: Computers
Page: 786
View: 2766
DOWNLOAD NOW »
Harness the power of Scala to program Spark and analyze tonnes of data in the blink of an eye! About This Book Learn Scala's sophisticated type system that combines Functional Programming and object-oriented concepts Work on a wide array of applications, from simple batch jobs to stream processing and machine learning Explore the most common as well as some complex use-cases to perform large-scale data analysis with Spark Who This Book Is For Anyone who wishes to learn how to perform data analysis by harnessing the power of Spark will find this book extremely useful. No knowledge of Spark or Scala is assumed, although prior programming experience (especially with other JVM languages) will be useful to pick up concepts quicker. What You Will Learn Understand object-oriented & functional programming concepts of Scala In-depth understanding of Scala collection APIs Work with RDD and DataFrame to learn Spark's core abstractions Analysing structured and unstructured data using SparkSQL and GraphX Scalable and fault-tolerant streaming application development using Spark structured streaming Learn machine-learning best practices for classification, regression, dimensionality reduction, and recommendation system to build predictive models with widely used algorithms in Spark MLlib & ML Build clustering models to cluster a vast amount of data Understand tuning, debugging, and monitoring Spark applications Deploy Spark applications on real clusters in Standalone, Mesos, and YARN In Detail Scala has been observing wide adoption over the past few years, especially in the field of data science and analytics. Spark, built on Scala, has gained a lot of recognition and is being used widely in productions. Thus, if you want to leverage the power of Scala and Spark to make sense of big data, this book is for you. The first part introduces you to Scala, helping you understand the object-oriented and functional programming concepts needed for Spark application development. It then moves on to Spark to cover the basic abstractions using RDD and DataFrame. This will help you develop scalable and fault-tolerant streaming applications by analyzing structured and unstructured data using SparkSQL, GraphX, and Spark structured streaming. Finally, the book moves on to some advanced topics, such as monitoring, configuration, debugging, testing, and deployment. You will also learn how to develop Spark applications using SparkR and PySpark APIs, interactive data analytics using Zeppelin, and in-memory data processing with Alluxio. By the end of this book, you will have a thorough understanding of Spark, and you will be able to perform full-stack data analytics with a feel that no amount of data is too big. Style and approach Filled with practical examples and use cases, this book will hot only help you get up and running with Spark, but will also take you farther down the road to becoming a data scientist.

Big Data For Dummies


Author: Judith Hurwitz,Alan Nugent,Fern Halper,Marcia Kaufman
Publisher: John Wiley & Sons
ISBN: 1118644174
Category: Computers
Page: 336
View: 6889
DOWNLOAD NOW »
Find the right big data solution for your business or organization Big data management is one of the major challenges facing business, industry, and not-for-profit organizations. Data sets such as customer transactions for a mega-retailer, weather patterns monitored by meteorologists, or social network activity can quickly outpace the capacity of traditional data management tools. If you need to develop or manage big data solutions, you'll appreciate how these four experts define, explain, and guide you through this new and often confusing concept. You'll learn what it is, why it matters, and how to choose and implement solutions that work. Effectively managing big data is an issue of growing importance to businesses, not-for-profit organizations, government, and IT professionals Authors are experts in information management, big data, and a variety of solutions Explains big data in detail and discusses how to select and implement a solution, security concerns to consider, data storage and presentation issues, analytics, and much more Provides essential information in a no-nonsense, easy-to-understand style that is empowering Big Data For Dummies cuts through the confusion and helps you take charge of big data solutions for your organization.

Apache Spark 2 for Beginners


Author: Rajanarayanan Thottuvaikkatumana
Publisher: Packt Publishing Ltd
ISBN: 178588669X
Category: Computers
Page: 332
View: 1170
DOWNLOAD NOW »
Develop large-scale distributed data processing applications using Spark 2 in Scala and Python About This Book This book offers an easy introduction to the Spark framework published on the latest version of Apache Spark 2 Perform efficient data processing, machine learning and graph processing using various Spark components A practical guide aimed at beginners to get them up and running with Spark Who This Book Is For If you are an application developer, data scientist, or big data solutions architect who is interested in combining the data processing power of Spark from R, and consolidating data processing, stream processing, machine learning, and graph processing into one unified and highly interoperable framework with a uniform API using Scala or Python, this book is for you. What You Will Learn Get to know the fundamentals of Spark 2 and the Spark programming model using Scala and Python Know how to use Spark SQL and DataFrames using Scala and Python Get an introduction to Spark programming using R Perform Spark data processing, charting, and plotting using Python Get acquainted with Spark stream processing using Scala and Python Be introduced to machine learning using Spark MLlib Get started with graph processing using the Spark GraphX Bring together all that you've learned and develop a complete Spark application In Detail Spark is one of the most widely-used large-scale data processing engines and runs extremely fast. It is a framework that has tools that are equally useful for application developers as well as data scientists. This book starts with the fundamentals of Spark 2 and covers the core data processing framework and API, installation, and application development setup. Then the Spark programming model is introduced through real-world examples followed by Spark SQL programming with DataFrames. An introduction to SparkR is covered next. Later, we cover the charting and plotting features of Python in conjunction with Spark data processing. After that, we take a look at Spark's stream processing, machine learning, and graph processing libraries. The last chapter combines all the skills you learned from the preceding chapters to develop a real-world Spark application. By the end of this book, you will have all the knowledge you need to develop efficient large-scale applications using Apache Spark. Style and approach Learn about Spark's infrastructure with this practical tutorial. With the help of real-world use cases on the main features of Spark we offer an easy introduction to the framework.

Data Science from Scratch

First Principles with Python
Author: Joel Grus
Publisher: "O'Reilly Media, Inc."
ISBN: 1491904402
Category: BUSINESS & ECONOMICS
Page: 330
View: 386
DOWNLOAD NOW »
Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

SQL Ultimate Beginner's Guide


Author: Nathan Clark
Publisher: Createspace Independent Publishing Platform
ISBN: 9781540323446
Category:
Page: 108
View: 561
DOWNLOAD NOW »
SQL Made Easy - a Step by Step Guide Are you curious to learn SQL? Does the thought of SQL rattle your brain? Do you need to learn how to use SQL in order to properly manage a database? Let this book settle your nerves and successfully guide you through the basics of learning SQL. This book serves to be used not only as a beginner's guide, but also as a cheat sheet. Finding a command, keyword, or function is simple in this clearly laid-out book. Functions and various commands are outlined in an easy to read format for quick referencing. Along with each stetement is an example in order to easily understand how to implement it. Take time to successfully learn SQL today! Learn SQL the right way with a guidebook that will help you understand what each and every symbol and text mean. With a complicated subject, this book will offer a simple solution! What You Will Learn Inside The basic workings of SQL. Detailed keywords, statements, commands and functions, and how to put them to use in specific or altered ways. How to use each formula in a real life situation. Terminology, syntax and expressions. Data types used by each of the four main databases. And much, much more. Get Your Copy Today!

Learning Spark

Lightning-Fast Big Data Analysis
Author: Holden Karau,Andy Konwinski,Patrick Wendell,Matei Zaharia
Publisher: "O'Reilly Media, Inc."
ISBN: 1449359051
Category: Computers
Page: 276
View: 8272
DOWNLOAD NOW »
Data in all domains is getting bigger. How can you work with it efficiently? Recently updated for Spark 1.3, this book introduces Apache Spark, the open source cluster computing system that makes data analytics fast to write and fast to run. With Spark, you can tackle big datasets quickly through simple APIs in Python, Java, and Scala. This edition includes new information on Spark SQL, Spark Streaming, setup, and Maven coordinates. Written by the developers of Spark, this book will have data scientists and engineers up and running in no time. You’ll learn how to express parallel jobs with just a few lines of code, and cover applications from simple batch jobs to stream processing and machine learning. Quickly dive into Spark capabilities such as distributed datasets, in-memory caching, and the interactive shell Leverage Spark’s powerful built-in libraries, including Spark SQL, Spark Streaming, and MLlib Use one programming paradigm instead of mixing and matching tools like Hive, Hadoop, Mahout, and Storm Learn how to deploy interactive, batch, and streaming applications Connect to data sources including HDFS, Hive, JSON, and S3 Master advanced topics like data partitioning and shared variables

Hadoop: The Definitive Guide


Author: Tom White
Publisher: "O'Reilly Media, Inc."
ISBN: 1449338771
Category: Computers
Page: 688
View: 600
DOWNLOAD NOW »
Ready to unlock the power of your data? With this comprehensive guide, you’ll learn how to build and maintain reliable, scalable, distributed systems with Apache Hadoop. This book is ideal for programmers looking to analyze datasets of any size, and for administrators who want to set up and run Hadoop clusters. You’ll find illuminating case studies that demonstrate how Hadoop is used to solve specific problems. This third edition covers recent changes to Hadoop, including material on the new MapReduce API, as well as MapReduce 2 and its more flexible execution model (YARN). Store large datasets with the Hadoop Distributed File System (HDFS) Run distributed computations with MapReduce Use Hadoop’s data and I/O building blocks for compression, data integrity, serialization (including Avro), and persistence Discover common pitfalls and advanced features for writing real-world MapReduce programs Design, build, and administer a dedicated Hadoop cluster—or run Hadoop in the cloud Load data from relational databases into HDFS, using Sqoop Perform large-scale data processing with the Pig query language Analyze datasets with Hive, Hadoop’s data warehousing system Take advantage of HBase for structured and semi-structured data, and ZooKeeper for building distributed systems

Pandas for Everyone

Python Data Analysis
Author: Daniel Y. Chen
Publisher: Addison-Wesley Professional
ISBN: 0134547055
Category: Computers
Page: 416
View: 4017
DOWNLOAD NOW »
The Hands-On, Example-Rich Introduction to Pandas Data Analysis in Python Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets. Pandas for Everyone brings together practical knowledge and insight for solving real problems with Pandas, even if you’re new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world problems. Chen gives you a jumpstart on using Pandas with a realistic dataset and covers combining datasets, handling missing data, and structuring datasets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes. Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability, and introduces you to the wider Python data analysis ecosystem. Work with DataFrames and Series, and import or export data Create plots with matplotlib, seaborn, and pandas Combine datasets and handle missing data Reshape, tidy, and clean datasets so they’re easier to work with Convert data types and manipulate text strings Apply functions to scale data manipulations Aggregate, transform, and filter large datasets with groupby Leverage Pandas’ advanced date and time capabilities Fit linear models using statsmodels and scikit-learn libraries Use generalized linear modeling to fit models with different response variables Compare multiple models to select the “best” Regularize to overcome overfitting and improve performance Use clustering in unsupervised machine learning Register your product at informit.com/register for convenient access to downloads, updates, and/or corrections as they become available.

Beginning Databases with PostgreSQL

From Novice to Professional
Author: Richard Stones,Neil Matthew
Publisher: Apress
ISBN: 9781430200185
Category: Computers
Page: 664
View: 2817
DOWNLOAD NOW »
*The most updated PostgreSQL book on the market, covering version 8.0 *Highlights the most popular PostgreSQL APIs, including C, Perl, PHP, and Java *This is two books in one; it simultaneously covers key relational database design principles, while teaching PostgreSQL

Applying Data Science

Business Case Studies Using SAS
Author: Gerhard Svolba
Publisher: SAS Institute
ISBN: 163526054X
Category: Mathematics
Page: 490
View: 354
DOWNLOAD NOW »
See how data science can answer the questions your business faces! Applying Data Science: Business Case Studies Using SAS, by Gerhard Svolba, shows you the benefits of analytics, how to gain more insight into your data, and how to make better decisions. In eight entertaining and real-world case studies, Svolba combines data science and advanced analytics with business questions, illustrating them with data and SAS code. The case studies range from a variety of fields, including performing headcount survival analysis for employee retention, forecasting the demand for new projects, using Monte Carlo simulation to understand outcome distribution, among other topics. The data science methods covered include Kaplan-Meier estimates, Cox Proportional Hazard Regression, ARIMA models, Poisson regression, imputation of missing values, variable clustering, and much more! Written for business analysts, statisticians, data miners, data scientists, and SAS programmers, Applying Data Science bridges the gap between high-level, business-focused books that skimp on the details and technical books that only show SAS code with no business context.

Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data


Author: Paul Zikopoulos,Chris Eaton
Publisher: McGraw Hill Professional
ISBN: 0071790543
Category: Computers
Page: 176
View: 1129
DOWNLOAD NOW »
Big Data represents a new era in data exploration and utilization, and IBM is uniquely positioned to help clients navigate this transformation. This book reveals how IBM is leveraging open source Big Data technology, infused with IBM technologies, to deliver a robust, secure, highly available, enterprise-class Big Data platform. The three defining characteristics of Big Data--volume, variety, and velocity--are discussed. You'll get a primer on Hadoop and how IBM is hardening it for the enterprise, and learn when to leverage IBM InfoSphere BigInsights (Big Data at rest) and IBM InfoSphere Streams (Big Data in motion) technologies. Industry use cases are also included in this practical guide. Learn how IBM hardens Hadoop for enterprise-class scalability and reliability Gain insight into IBM's unique in-motion and at-rest Big Data analytics platform Learn tips and tricks for Big Data use cases and solutions Get a quick Hadoop primer

Data Wrangling with Python

Tips and Tools to Make Your Life Easier
Author: Jacqueline Kazil,Katharine Jarmul
Publisher: "O'Reilly Media, Inc."
ISBN: 1491948779
Category: Computers
Page: 508
View: 1960
DOWNLOAD NOW »
How do you take your data analysis skills beyond Excel to the next level? By learning just enough Python to get stuff done. This hands-on guide shows non-programmers like you how to process information that’s initially too messy or difficult to access. You don't need to know a thing about the Python programming language to get started. Through various step-by-step exercises, you’ll learn how to acquire, clean, analyze, and present data efficiently. You’ll also discover how to automate your data process, schedule file- editing and clean-up tasks, process larger datasets, and create compelling stories with data you obtain. Quickly learn basic Python syntax, data types, and language concepts Work with both machine-readable and human-consumable data Scrape websites and APIs to find a bounty of useful information Clean and format data to eliminate duplicates and errors in your datasets Learn when to standardize data and when to test and script data cleanup Explore and analyze your datasets with new Python libraries and techniques Use Python solutions to automate your entire data-wrangling process

Oracle Big Data Handbook


Author: Tom Plunkett,Brian Macdonald,Bruce Nelson,Mark Hornick,Helen Sun,Keith Laker,Khader Mohiuddin,Debra Harding,Gokula Mishra,David Segleau,Robert Stackowiak
Publisher: McGraw Hill Professional
ISBN: 0071827269
Category: Computers
Page: 464
View: 9500
DOWNLOAD NOW »
"Cowritten by members of Oracle's big data team, [this book] provides complete coverage of Oracle's comprehensive, integrated set of products for acquiring, organizing, analyzing, and leveraging unstructured data. The book discusses the strategies and technologies essential for a successful big data implementation, including Apache Hadoop, Oracle Big Data Appliance, Oracle Big Data Connectors, Oracle NoSQL Database, Oracle Endeca, Oracle Advanced Analytics, and Oracle's open source R offerings"--Page 4 of cover.

Performance and Capacity Implications for Big Data


Author: Dave Jewell,Ricardo Dobelin Barros,Stefan Diederichs,Lydia M. Duijvestijn,Michael Hammersley,Arindam Hazra,Corneliu Holban,Yan Li,Osai Osaigbovo,Andreas Plach,Ivan Portilla,Mukerji Saptarshi,Harinder P. Seera,Elisabeth Stahl,Clea Zolotow,IBM Redbooks
Publisher: IBM Redbooks
ISBN: 0738453587
Category: Computers
Page: 46
View: 6534
DOWNLOAD NOW »
Big data solutions enable us to change how we do business by exploiting previously unused sources of information in ways that were not possible just a few years ago. In IBM® Smarter Planet® terms, big data helps us to change the way that the world works. The purpose of this IBM RedpaperTM publication is to consider the performance and capacity implications of big data solutions, which must be taken into account for them to be viable. This paper describes the benefits that big data approaches can provide. We then cover performance and capacity considerations for creating big data solutions. We conclude with what this means for big data solutions, both now and in the future. Intended readers for this paper include decision-makers, consultants, and IT architects.

Data Mining: Concepts and Techniques


Author: Jiawei Han,Jian Pei,Micheline Kamber
Publisher: Elsevier
ISBN: 9780123814807
Category: Computers
Page: 744
View: 3839
DOWNLOAD NOW »
Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data

Managing Data in Motion

Data Integration Best Practice Techniques and Technologies
Author: April Reeve
Publisher: Newnes
ISBN: 0123977916
Category: Computers
Page: 204
View: 8804
DOWNLOAD NOW »
Managing Data in Motion describes techniques that have been developed for significantly reducing the complexity of managing system interfaces and enabling scalable architectures. Author April Reeve brings over two decades of experience to present a vendor-neutral approach to moving data between computing environments and systems. Readers will learn the techniques, technologies, and best practices for managing the passage of data between computer systems and integrating disparate data together in an enterprise environment. The average enterprise's computing environment is comprised of hundreds to thousands computer systems that have been built, purchased, and acquired over time. The data from these various systems needs to be integrated for reporting and analysis, shared for business transaction processing, and converted from one format to another when old systems are replaced and new systems are acquired. The management of the "data in motion" in organizations is rapidly becoming one of the biggest concerns for business and IT management. Data warehousing and conversion, real-time data integration, and cloud and "big data" applications are just a few of the challenges facing organizations and businesses today. Managing Data in Motion tackles these and other topics in a style easily understood by business and IT managers as well as programmers and architects. Presents a vendor-neutral overview of the different technologies and techniques for moving data between computer systems including the emerging solutions for unstructured as well as structured data types Explains, in non-technical terms, the architecture and components required to perform data integration Describes how to reduce the complexity of managing system interfaces and enable a scalable data architecture that can handle the dimensions of "Big Data"

Big Data Processing with Apache Spark


Author: Srini Penchikala
Publisher: Lulu.com
ISBN: 1387659952
Category:
Page: N.A
View: 2625
DOWNLOAD NOW »


Excel Data Analysis For Dummies


Author: Stephen L. Nelson,E. C. Nelson
Publisher: John Wiley & Sons
ISBN: 1119077168
Category: Computers
Page: 384
View: 1811
DOWNLOAD NOW »
Want to take the guesswork out of analyzing data? Let Excel do all the work for you! Data collection, management and analysis is the key to making effective business decisions, and if you are like most people, you probably don't take full advantage of Excel's data analysis tools. With Excel Data Analysis For Dummies, 3rd Edition, you'll learn how to leverage Microsoft Excel to take your data analysis to new heights by uncovering what is behind all of those mind-numbing numbers. The beauty of Excel lies in its functionality as a powerful data analysis tool. This easy-to-read guide will show you how to use Excel in conjunction with external databases, how to fully leverage PivotTables and PivotCharts, tips and tricks for using Excel's statistical and financial functions, how to visually present your data so it makes sense, and information about the fancier, more advanced tools for those who have mastered the basics! Once you're up to speed, you can stop worrying about how to make use of all that data you have on your hands and get down to the business of discovering meaningful, actionable insights for your business or organization. Excel is the most popular business intelligence tool in the world, and the newest update – Microsoft Excel 2016 – features even more powerful features for data analysis and visualization. Users can slice and dice their data and create visual presentations that turn otherwise indecipherable reports into easy-to-digest presentations that can quickly and effectively illustrate the key insights you are seeking. Fully updated to cover the latest updates and features of Excel 2016 Learn useful details about statistics, analysis, and visual presentations for your data Features coverage of database and statistics functions, descriptive statistics, inferential statistics, and optimization modeling with Solver Helps anyone who needs insight into how to get things done with data that is unwieldy and difficult to understand With Excel Data Analysis For Dummies, 3rd Edition, you'll soon be quickly and easily performing key analyses that can drive organizational decisions and create competitive advantages.