Data Mining and Machine Learning in Cybersecurity


Author: Sumeet Dua,Xian Du
Publisher: CRC Press
ISBN: 9781439839430
Category: Computers
Page: 256
View: 4859
DOWNLOAD NOW »
With the rapid advancement of information discovery techniques, machine learning and data mining continue to play a significant role in cybersecurity. Although several conferences, workshops, and journals focus on the fragmented research topics in this area, there has been no single interdisciplinary resource on past and current works and possible paths for future research in this area. This book fills this need. From basic concepts in machine learning and data mining to advanced problems in the machine learning domain, Data Mining and Machine Learning in Cybersecurity provides a unified reference for specific machine learning solutions to cybersecurity problems. It supplies a foundation in cybersecurity fundamentals and surveys contemporary challenges—detailing cutting-edge machine learning and data mining techniques. It also: Unveils cutting-edge techniques for detecting new attacks Contains in-depth discussions of machine learning solutions to detection problems Categorizes methods for detecting, scanning, and profiling intrusions and anomalies Surveys contemporary cybersecurity problems and unveils state-of-the-art machine learning and data mining solutions Details privacy-preserving data mining methods This interdisciplinary resource includes technique review tables that allow for speedy access to common cybersecurity problems and associated data mining methods. Numerous illustrative figures help readers visualize the workflow of complex techniques and more than forty case studies provide a clear understanding of the design and application of data mining and machine learning techniques in cybersecurity.

Network Intrusion Detection


Author: Stephen Northcutt,Judy Novak
Publisher: N.A
ISBN: 9783826650444
Category:
Page: 501
View: 2471
DOWNLOAD NOW »


Machine Learning for Computer and Cyber Security

Principle, Algorithms, and Practices
Author: Brij B. Gupta,Quan Z. Sheng
Publisher: CRC Press
ISBN: 0429995717
Category: Computers
Page: 352
View: 513
DOWNLOAD NOW »
While Computer Security is a broader term which incorporates technologies, protocols, standards and policies to ensure the security of the computing systems including the computer hardware, software and the information stored in it, Cyber Security is a specific, growing field to protect computer networks (offline and online) from unauthorized access, botnets, phishing scams, etc. Machine learning is a branch of Computer Science which enables computing machines to adopt new behaviors on the basis of observable and verifiable data and information. It can be applied to ensure the security of the computers and the information by detecting anomalies using data mining and other such techniques. This book will be an invaluable resource to understand the importance of machine learning and data mining in establishing computer and cyber security. It emphasizes important security aspects associated with computer and cyber security along with the analysis of machine learning and data mining based solutions. The book also highlights the future research domains in which these solutions can be applied. Furthermore, it caters to the needs of IT professionals, researchers, faculty members, scientists, graduate students, research scholars and software developers who seek to carry out research and develop combating solutions in the area of cyber security using machine learning based approaches. It is an extensive source of information for the readers belonging to the field of Computer Science and Engineering, and Cyber Security professionals. Key Features: This book contains examples and illustrations to demonstrate the principles, algorithms, challenges and applications of machine learning and data mining for computer and cyber security. It showcases important security aspects and current trends in the field. It provides an insight of the future research directions in the field. Contents of this book help to prepare the students for exercising better defense in terms of understanding the motivation of the attackers and how to deal with and mitigate the situation using machine learning based approaches in better manner.

Data mining

praktische Werkzeuge und Techniken für das maschinelle Lernen
Author: Ian H. Witten,Eibe Frank
Publisher: N.A
ISBN: 9783446215337
Category:
Page: 386
View: 3234
DOWNLOAD NOW »


Machine Learning and Cognitive Science Applications in Cyber Security


Author: Khan, Muhammad Salman
Publisher: IGI Global
ISBN: 1522581014
Category: Computers
Page: 321
View: 4899
DOWNLOAD NOW »
In the past few years, with the evolution of advanced persistent threats and mutation techniques, sensitive and damaging information from a variety of sources have been exposed to possible corruption and hacking. Machine learning, artificial intelligence, predictive analytics, and similar disciplines of cognitive science applications have been found to have significant applications in the domain of cyber security. Machine Learning and Cognitive Science Applications in Cyber Security examines different applications of cognition that can be used to detect threats and analyze data to capture malware. Highlighting such topics as anomaly detection, intelligent platforms, and triangle scheme, this publication is designed for IT specialists, computer engineers, researchers, academicians, and industry professionals interested in the impact of machine learning in cyber security and the methodologies that can help improve the performance and reliability of machine learning applications.

Statistik-Workshop für Programmierer


Author: Allen B. Downey
Publisher: O'Reilly Germany
ISBN: 3868993436
Category: Computers
Page: 160
View: 6310
DOWNLOAD NOW »
Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Machine Learning and Security

Protecting Systems with Data and Algorithms
Author: Clarence Chio,David Freeman
Publisher: "O'Reilly Media, Inc."
ISBN: 1491979879
Category: Computers
Page: 386
View: 5469
DOWNLOAD NOW »
Can machine learning techniques solve our computer security problems and finally put an end to the cat-and-mouse game between attackers and defenders? Or is this hope merely hype? Now you can dive into the science and answer this question for yourself! With this practical guide, you’ll explore ways to apply machine learning to security issues such as intrusion detection, malware classification, and network analysis. Machine learning and security specialists Clarence Chio and David Freeman provide a framework for discussing the marriage of these two fields, as well as a toolkit of machine-learning algorithms that you can apply to an array of security problems. This book is ideal for security engineers and data scientists alike. Learn how machine learning has contributed to the success of modern spam filters Quickly detect anomalies, including breaches, fraud, and impending system failure Conduct malware analysis by extracting useful information from computer binaries Uncover attackers within the network by finding patterns inside datasets Examine how attackers exploit consumer-facing websites and app functionality Translate your machine learning algorithms from the lab to production Understand the threat attackers pose to machine learning solutions

Data Science For Cyber-security


Author: Adams Niall M,Heard Nicholas A,Rubin-delanchy Patrick
Publisher: World Scientific
ISBN: 178634565X
Category: Computers
Page: 304
View: 3181
DOWNLOAD NOW »
Cyber-security is a matter of rapidly growing importance in industry and government. This book provides insight into a range of data science techniques for addressing these pressing concerns.The application of statistical and broader data science techniques provides an exciting growth area in the design of cyber defences. Networks of connected devices, such as enterprise computer networks or the wider so-called Internet of Things, are all vulnerable to misuse and attack, and data science methods offer the promise to detect such behaviours from the vast collections of cyber traffic data sources that can be obtained. In many cases, this is achieved through anomaly detection of unusual behaviour against understood statistical models of normality.This volume presents contributed papers from an international conference of the same name held at Imperial College. Experts from the field have provided their latest discoveries and review state of the art technologies.

Worm

Der erste digitale Weltkrieg
Author: Mark Bowden
Publisher: ebook Berlin Verlag
ISBN: 3827075203
Category: Science
Page: 288
View: 1553
DOWNLOAD NOW »
Dass Cyberverbrechen und Cyberwar keine bloß virtuellen Gefahren mehr sind, sickert erst allmählich ins öffentliche und politische Bewusstsein. Als der Computerwurm »Conficker« im November 2008 auf die Welt losgelassen wurde, infizierte er binnen weniger Wochen Millionen von Computern weltweit. War er in ein System eingedrungen, konnte er dieses mit anderen verbinden und so ein Netzwerk bilden, das sich von außen kontrollieren ließ. Ein solch großes Botnetz ist theoretisch in der Lage, sämtliche Computernetzwerke zu überwältigen, ohne die heute unsere Banken, Telefone, Kraftwerke oder Flughäfen, ja sogar das Internet selbst kollabieren würden - mit unabsehbaren Folgen. War »Conficker« nur das Werkzeug von Cyberkriminellen oder gar eine reale militärische Waffe mit so nie dagewesenem Zerstörungspotenzial? Mark Bowden erzählt, wie in einem dramatischen Wettlauf Computerexperten alles daransetzen, den brandgefährlichen Wurm auszuschalten. Packend beschreibt er einen nach wie vor völlig unterschätzten Krieg, der buchstäblich unter unseren Fingerspitzen auf der Tastatur ausgefochten wird.

Hands-On Machine Learning for Cybersecurity

Safeguard your system by making your machines intelligent using the Python ecosystem
Author: Soma Halder,Sinan Ozdemir
Publisher: Packt Publishing Ltd
ISBN: 178899096X
Category: Computers
Page: 318
View: 1145
DOWNLOAD NOW »
Get into the world of smart data security using machine learning algorithms and Python libraries Key Features Learn machine learning algorithms and cybersecurity fundamentals Automate your daily workflow by applying use cases to many facets of security Implement smart machine learning solutions to detect various cybersecurity problems Book Description Cyber threats today are one of the costliest losses that an organization can face. In this book, we use the most efficient tool to solve the big problems that exist in the cybersecurity domain. The book begins by giving you the basics of ML in cybersecurity using Python and its libraries. You will explore various ML domains (such as time series analysis and ensemble modeling) to get your foundations right. You will implement various examples such as building system to identify malicious URLs, and building a program to detect fraudulent emails and spam. Later, you will learn how to make effective use of K-means algorithm to develop a solution to detect and alert you to any malicious activity in the network. Also learn how to implement biometrics and fingerprint to validate whether the user is a legitimate user or not. Finally, you will see how we change the game with TensorFlow and learn how deep learning is effective for creating models and training systems What you will learn Use machine learning algorithms with complex datasets to implement cybersecurity concepts Implement machine learning algorithms such as clustering, k-means, and Naive Bayes to solve real-world problems Learn to speed up a system using Python libraries with NumPy, Scikit-learn, and CUDA Understand how to combat malware, detect spam, and fight financial fraud to mitigate cyber crimes Use TensorFlow in the cybersecurity domain and implement real-world examples Learn how machine learning and Python can be used in complex cyber issues Who this book is for This book is for the data scientists, machine learning developers, security researchers, and anyone keen to apply machine learning to up-skill computer security. Having some working knowledge of Python and being familiar with the basics of machine learning and cybersecurity fundamentals will help to get the most out of the book

Data Analytics and Decision Support for Cybersecurity

Trends, Methodologies and Applications
Author: Iván Palomares Carrascosa,Harsha Kumara Kalutarage,Yan Huang
Publisher: Springer
ISBN: 3319594397
Category: Computers
Page: 270
View: 5555
DOWNLOAD NOW »
The book illustrates the inter-relationship between several data management, analytics and decision support techniques and methods commonly adopted in Cybersecurity-oriented frameworks. The recent advent of Big Data paradigms and the use of data science methods, has resulted in a higher demand for effective data-driven models that support decision-making at a strategic level. This motivates the need for defining novel data analytics and decision support approaches in a myriad of real-life scenarios and problems, with Cybersecurity-related domains being no exception. This contributed volume comprises nine chapters, written by leading international researchers, covering a compilation of recent advances in Cybersecurity-related applications of data analytics and decision support approaches. In addition to theoretical studies and overviews of existing relevant literature, this book comprises a selection of application-oriented research contributions. The investigations undertaken across these chapters focus on diverse and critical Cybersecurity problems, such as Intrusion Detection, Insider Threats, Insider Threats, Collusion Detection, Run-Time Malware Detection, Intrusion Detection, E-Learning, Online Examinations, Cybersecurity noisy data removal, Secure Smart Power Systems, Security Visualization and Monitoring. Researchers and professionals alike will find the chapters an essential read for further research on the topic.

Leben 3.0

Mensch sein im Zeitalter Künstlicher Intelligenz
Author: Max Tegmark
Publisher: Ullstein Buchverlage
ISBN: 3843716706
Category: Social Science
Page: 528
View: 9234
DOWNLOAD NOW »
Die Nobelpreis-Schmiede Massachusetts Institute of Technology ist der bedeutendste technologische Think Tank der USA. Dort arbeitet Professor Max Tegmark mit den weltweit führenden Entwicklern künstlicher Intelligenz zusammen, die ihm exklusive Einblicke in ihre Labors gewähren. Die Erkenntnisse, die er daraus zieht, sind atemberaubend und zutiefst verstörend zugleich. Neigt sich die Ära der Menschen dem Ende zu? Der Physikprofessor Max Tegmark zeigt anhand der neusten Forschung, was die Menschheit erwartet. Hier eine Auswahl möglicher Szenarien: - Eroberer: Künstliche Intelligenz übernimmt die Macht und entledigt sich der Menschheit mit Methoden, die wir noch nicht einmal verstehen. - Der versklavte Gott: Die Menschen bemächtigen sich einer superintelligenten künstlichen Intelligenz und nutzen sie, um Hochtechnologien herzustellen. - Umkehr: Der technologische Fortschritt wird radikal unterbunden und wir kehren zu einer prä-technologischen Gesellschaft im Stil der Amish zurück. - Selbstzerstörung: Superintelligenz wird nicht erreicht, weil sich die Menschheit vorher nuklear oder anders selbst vernichtet. - Egalitäres Utopia: Es gibt weder Superintelligenz noch Besitz, Menschen und kybernetische Organismen existieren friedlich nebeneinander. Max Tegmark bietet kluge und fundierte Zukunftsszenarien basierend auf seinen exklusiven Einblicken in die aktuelle Forschung zur künstlichen Intelligenz.

R für Dummies


Author: Andrie de Vries,Joris Meys
Publisher: John Wiley & Sons
ISBN: 3527812520
Category: Computers
Page: 414
View: 2831
DOWNLOAD NOW »
Wollen Sie auch die umfangreichen Möglichkeiten von R nutzen, um Ihre Daten zu analysieren, sind sich aber nicht sicher, ob Sie mit der Programmiersprache wirklich zurechtkommen? Keine Sorge - dieses Buch zeigt Ihnen, wie es geht - selbst wenn Sie keine Vorkenntnisse in der Programmierung oder Statistik haben. Andrie de Vries und Joris Meys zeigen Ihnen Schritt für Schritt und anhand zahlreicher Beispiele, was Sie alles mit R machen können und vor allem wie Sie es machen können. Von den Grundlagen und den ersten Skripten bis hin zu komplexen statistischen Analysen und der Erstellung aussagekräftiger Grafiken. Auch fortgeschrittenere Nutzer finden in diesem Buch viele Tipps und Tricks, die Ihnen die Datenauswertung erleichtern.

Algorithmen für Dummies


Author: John Paul Mueller,Luca Massaron
Publisher: John Wiley & Sons
ISBN: 3527809775
Category: Computers
Page: 320
View: 3842
DOWNLOAD NOW »
Wir leben in einer algorithmenbestimmten Welt. Deshalb lohnt es sich zu verstehen, wie Algorithmen arbeiten. Das Buch präsentiert die wichtigsten Anwendungsgebiete für Algorithmen: Optimierung, Sortiervorgänge, Graphentheorie, Textanalyse, Hashfunktionen. Zu jedem Algorithmus werden jeweils Hintergrundwissen und praktische Grundlagen vermittelt sowie Beispiele für aktuelle Anwendungen gegeben. Für interessierte Leser gibt es Umsetzungen in Python, sodass die Algorithmen auch verändert und die Auswirkungen der Veränderungen beobachtet werden können. Dieses Buch richtet sich an Menschen, die an Algorithmen interessiert sind, ohne eine Doktorarbeit zu dem Thema schreiben zu wollen. Wer es gelesen hat, versteht, wie wichtige Algorithmen arbeiten und wie man von dieser Arbeit beispielsweise bei der Entwicklung von Unternehmensstrategien profitieren kann.

Design and Implementation of Data Mining Tools


Author: Bhavani Thuraisingham,Latifur Khan,Mamoun Awad,Lei Wang
Publisher: CRC Press
ISBN: 9781420045918
Category: Computers
Page: 272
View: 6522
DOWNLOAD NOW »
Focusing on three applications of data mining, Design and Implementation of Data Mining Tools explains how to create and employ systems and tools for intrusion detection, Web page surfing prediction, and image classification. Mainly based on the authors’ own research work, the book takes a practical approach to the subject. The first part of the book reviews data mining techniques, such as artificial neural networks and support vector machines, as well as data mining applications. The second section covers the design and implementation of data mining tools for intrusion detection. It examines various designs and performance results, along with the strengths and weaknesses of the approaches. The third part presents techniques to solve the WWW prediction problem. The final part describes models that the authors have developed for image classification. Showing step by step how data mining tools are developed, this hands-on guide discusses the performance results, limitations, and unique contributions of data mining systems. It provides essential information for technologists to decide on the tools to select for a particular application, for developers to focus on alternative designs if an approach is unsuitable, and for managers to choose whether to proceed with a data mining project.

Cyber Security Cryptography and Machine Learning

First International Conference, CSCML 2017, Beer-Sheva, Israel, June 29-30, 2017, Proceedings
Author: Shlomi Dolev,Sachin Lodha
Publisher: Springer
ISBN: 331960080X
Category: Computers
Page: 307
View: 7664
DOWNLOAD NOW »
This book constitutes the proceedings of the first International Symposium on Cyber Security Cryptography and Machine Learning, held in Beer-Sheva, Israel, in June 2017. The 17 full and 4 short papers presented include cyber security; secure software development methodologies, formal methods semantics and verification of secure systems; fault tolerance, reliability, availability of distributed secure systems; game-theoretic approaches to secure computing; automatic recovery of self-stabilizing and self-organizing systems; communication, authentication and identification security; cyber security for mobile and Internet of things; cyber security of corporations; security and privacy for cloud, edge and fog computing; cryptography; cryptographic implementation analysis and construction; secure multi-party computation; privacy-enhancing technologies and anonymity; post-quantum cryptography and security; machine learning and big data; anomaly detection and malware identification; business intelligence and security; digital forensics; digital rights management; trust management and reputation systems; information retrieval, risk analysis, DoS.

Praxiseinstieg Deep Learning

Mit Python, Caffe, TensorFlow und Spark eigene Deep-Learning-Anwendungen erstellen
Author: Ramon Wartala
Publisher: O'Reilly
ISBN: 3960101570
Category: Computers
Page: 226
View: 1233
DOWNLOAD NOW »
Deep Learning ist ein Teilbereich des Machine Learning und basiert auf künstlichen neuronalen Netzen. Dieser praktische Leitfaden bietet einen schnellen Einstieg in die Schlüsseltechnologie und erschließt Grundlagen und Arbeitsweisen von Deep Learning. Anhand Python-basierter Beispielanwendungen wird der Umgang mit den Frameworks Caffe/Caffe2 und TensorFlow gezeigt. Einfache, alltagstaugliche Beispiele laden zum Nachprogrammieren ein. Darüber hinaus erfahren Sie, warum moderne Grafikkarten, Big Data und Cloud Computing beim Deep Learning so wichtig sind. Wenn Sie bereits mit Python, NumPy und matplotlib arbeiten, ermöglicht Ihnen dieses Buch, praktische Erfahrungen mit Deep-Learning-Anwendungen zu machen. Deep Learning – die Hintergründe - Lernmethoden, die Deep Learning zugrunde liegen - Aktuelle Anwendungsfelder wie maschinelle Übersetzungen, Sprach- und Bilderkennung bei Google, Facebook, IBM oder Amazon Der Werkzeugkasten mit Docker - Der Docker-Container zum Buch: Alle nötigen Tools und Programme sind bereits installiert, damit Sie die Beispiele des Buchs und eigene Deep-Learning-Anwendungen leicht ausführen können. - Die Arbeitsumgebung kennenlernen: Jupyter Notebook, Beispieldatensätze, Web Scraping Der Praxiseinstieg - Einführung in Caffe/Caffe2 und TensorFlow - Deep-Learning-Anwendungen nachprogrammieren: Handschrifterkennung, Bilderkennung und -klassifizierung, Deep Dreaming - Lösungen für Big-Data-Szenarien: verteilte Anwendungen, Spark, Cloud-Systeme - Modelle in produktive Systeme überführen

Neuronale Netze selbst programmieren

Ein verständlicher Einstieg mit Python
Author: Tariq Rashid
Publisher: O'Reilly
ISBN: 3960101031
Category: Computers
Page: 232
View: 3988
DOWNLOAD NOW »
Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Sie sind Grundlage vieler Anwendungen im Alltag wie beispielsweise Spracherkennung, Gesichtserkennung auf Fotos oder die Umwandlung von Sprache in Text. Dennoch verstehen nur wenige, wie neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie neuronale Netze arbeiten: - Zunächst lernen Sie die mathematischen Konzepte kennen, die den neuronalen Netzen zugrunde liegen. Dafür brauchen Sie keine tieferen Mathematikkenntnisse, denn alle mathematischen Ideen werden behutsam und mit vielen Illustrationen und Beispielen erläutert. Eine Kurzeinführung in die Analysis unterstützt Sie dabei. - Dann geht es in die Praxis: Nach einer Einführung in die populäre und leicht zu lernende Programmiersprache Python bauen Sie allmählich Ihr eigenes neuronales Netz mit Python auf. Sie bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. - Im nächsten Schritt tunen Sie die Leistung Ihres neuronalen Netzes so weit, dass es eine Zahlenerkennung von 98 % erreicht – nur mit einfachen Ideen und simplem Code. Sie testen das Netz mit Ihrer eigenen Handschrift und werfen noch einen Blick in das mysteriöse Innere eines neuronalen Netzes. - Zum Schluss lassen Sie das neuronale Netz auf einem Raspberry Pi Zero laufen. Tariq Rashid erklärt diese schwierige Materie außergewöhnlich klar und verständlich, dadurch werden neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

Cyber Threat Intelligence


Author: Ali Dehghantanha,Mauro Conti,Tooska Dargahi
Publisher: Springer
ISBN: 3319739514
Category: Computers
Page: 334
View: 1208
DOWNLOAD NOW »
This book provides readers with up-to-date research of emerging cyber threats and defensive mechanisms, which are timely and essential. It covers cyber threat intelligence concepts against a range of threat actors and threat tools (i.e. ransomware) in cutting-edge technologies, i.e., Internet of Things (IoT), Cloud computing and mobile devices. This book also provides the technical information on cyber-threat detection methods required for the researcher and digital forensics experts, in order to build intelligent automated systems to fight against advanced cybercrimes. The ever increasing number of cyber-attacks requires the cyber security and forensic specialists to detect, analyze and defend against the cyber threats in almost real-time, and with such a large number of attacks is not possible without deeply perusing the attack features and taking corresponding intelligent defensive actions – this in essence defines cyber threat intelligence notion. However, such intelligence would not be possible without the aid of artificial intelligence, machine learning and advanced data mining techniques to collect, analyze, and interpret cyber-attack campaigns which is covered in this book. This book will focus on cutting-edge research from both academia and industry, with a particular emphasis on providing wider knowledge of the field, novelty of approaches, combination of tools and so forth to perceive reason, learn and act on a wide range of data collected from different cyber security and forensics solutions. This book introduces the notion of cyber threat intelligence and analytics and presents different attempts in utilizing machine learning and data mining techniques to create threat feeds for a range of consumers. Moreover, this book sheds light on existing and emerging trends in the field which could pave the way for future works. The inter-disciplinary nature of this book, makes it suitable for a wide range of audiences with backgrounds in artificial intelligence, cyber security, forensics, big data and data mining, distributed systems and computer networks. This would include industry professionals, advanced-level students and researchers that work within these related fields.