Data Wrangling with Python

Tips and Tools to Make Your Life Easier
Author: Jacqueline Kazil,Katharine Jarmul
Publisher: "O'Reilly Media, Inc."
ISBN: 1491956801
Category: Computers
Page: 508
View: 1514
DOWNLOAD NOW »
How do you take your data analysis skills beyond Excel to the next level? By learning just enough Python to get stuff done. This hands-on guide shows non-programmers like you how to process information that’s initially too messy or difficult to access. You don't need to know a thing about the Python programming language to get started. Through various step-by-step exercises, you’ll learn how to acquire, clean, analyze, and present data efficiently. You’ll also discover how to automate your data process, schedule file- editing and clean-up tasks, process larger datasets, and create compelling stories with data you obtain. Quickly learn basic Python syntax, data types, and language concepts Work with both machine-readable and human-consumable data Scrape websites and APIs to find a bounty of useful information Clean and format data to eliminate duplicates and errors in your datasets Learn when to standardize data and when to test and script data cleanup Explore and analyze your datasets with new Python libraries and techniques Use Python solutions to automate your entire data-wrangling process

Data Wrangling with Python

Tips and Tools to Make Your Life Easier
Author: Jacqueline Kazil,Katharine Jarmul
Publisher: "O'Reilly Media, Inc."
ISBN: 1491948779
Category: Computers
Page: 508
View: 5199
DOWNLOAD NOW »
How do you take your data analysis skills beyond Excel to the next level? By learning just enough Python to get stuff done. This hands-on guide shows non-programmers like you how to process information that’s initially too messy or difficult to access. You don't need to know a thing about the Python programming language to get started. Through various step-by-step exercises, you’ll learn how to acquire, clean, analyze, and present data efficiently. You’ll also discover how to automate your data process, schedule file- editing and clean-up tasks, process larger datasets, and create compelling stories with data you obtain. Quickly learn basic Python syntax, data types, and language concepts Work with both machine-readable and human-consumable data Scrape websites and APIs to find a bounty of useful information Clean and format data to eliminate duplicates and errors in your datasets Learn when to standardize data and when to test and script data cleanup Explore and analyze your datasets with new Python libraries and techniques Use Python solutions to automate your entire data-wrangling process

Principles of Data Wrangling

Practical Techniques for Data Preparation
Author: Tye Rattenbury,Joseph M. Hellerstein,Jeffrey Heer,Sean Kandel,Connor Carreras
Publisher: "O'Reilly Media, Inc."
ISBN: 1491938870
Category: Computers
Page: 94
View: 5735
DOWNLOAD NOW »
A key task that any aspiring data-driven organization needs to learn is data wrangling, the process of converting raw data into something truly useful. This practical guide provides business analysts with an overview of various data wrangling techniques and tools, and puts the practice of data wrangling into context by asking, "What are you trying to do and why?" Wrangling data consumes roughly 50-80% of an analyst’s time before any kind of analysis is possible. Written by key executives at Trifacta, this book walks you through the wrangling process by exploring several factors—time, granularity, scope, and structure—that you need to consider as you begin to work with data. You’ll learn a shared language and a comprehensive understanding of data wrangling, with an emphasis on recent agile analytic processes used by many of today’s data-driven organizations. Appreciate the importance—and the satisfaction—of wrangling data the right way. Understand what kind of data is available Choose which data to use and at what level of detail Meaningfully combine multiple sources of data Decide how to distill the results to a size and shape that can drive downstream analysis

Python for Data Analysis

Data Wrangling with Pandas, NumPy, and IPython
Author: Wes McKinney
Publisher: "O'Reilly Media, Inc."
ISBN: 1491957611
Category: Computers
Page: 550
View: 1682
DOWNLOAD NOW »
Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples

Data Visualization with Python and JavaScript

Scrape, Clean, Explore & Transform Your Data
Author: Kyran Dale
Publisher: "O'Reilly Media, Inc."
ISBN: 1491920548
Category: Computers
Page: 592
View: 8140
DOWNLOAD NOW »
Learn how to turn raw data into rich, interactive web visualizations with the powerful combination of Python and JavaScript. With this hands-on guide, author Kyran Dale teaches you how build a basic dataviz toolchain with best-of-breed Python and JavaScript libraries—including Scrapy, Matplotlib, Pandas, Flask, and D3—for crafting engaging, browser-based visualizations. As a working example, throughout the book Dale walks you through transforming Wikipedia’s table-based list of Nobel Prize winners into an interactive visualization. You’ll examine steps along the entire toolchain, from scraping, cleaning, exploring, and delivering data to building the visualization with JavaScript’s D3 library. If you’re ready to create your own web-based data visualizations—and know either Python or JavaScript— this is the book for you. Learn how to manipulate data with Python Understand the commonalities between Python and JavaScript Extract information from websites by using Python’s web-scraping tools, BeautifulSoup and Scrapy Clean and explore data with Python’s Pandas, Matplotlib, and Numpy libraries Serve data and create RESTful web APIs with Python’s Flask framework Create engaging, interactive web visualizations with JavaScript’s D3 library

Practical Data Wrangling

Expert techniques for transforming your raw data into a valuable source for analytics
Author: Allan Visochek
Publisher: Packt Publishing Ltd
ISBN: 1787283674
Category: Computers
Page: 204
View: 7203
DOWNLOAD NOW »
Turn your noisy data into relevant, insight-ready information by leveraging the data wrangling techniques in Python and R About This Book This easy-to-follow guide takes you through every step of the data wrangling process in the best possible way Work with different types of datasets, and reshape the layout of your data to make it easier for analysis Get simple examples and real-life data wrangling solutions for data pre-processing Who This Book Is For If you are a data scientist, data analyst, or a statistician who wants to learn how to wrangle your data for analysis in the best possible manner, this book is for you. As this book covers both R and Python, some understanding of them will be beneficial. What You Will Learn Read a csv file into python and R, and print out some statistics on the data Gain knowledge of the data formats and programming structures involved in retrieving API data Make effective use of regular expressions in the data wrangling process Explore the tools and packages available to prepare numerical data for analysis Find out how to have better control over manipulating the structure of the data Create a dexterity to programmatically read, audit, correct, and shape data Write and complete programs to take in, format, and output data sets In Detail Around 80% of time in data analysis is spent on cleaning and preparing data for analysis. This is, however, an important task, and is a prerequisite to the rest of the data analysis workflow, including visualization, analysis and reporting. Python and R are considered a popular choice of tool for data analysis, and have packages that can be best used to manipulate different kinds of data, as per your requirements. This book will show you the different data wrangling techniques, and how you can leverage the power of Python and R packages to implement them. You'll start by understanding the data wrangling process and get a solid foundation to work with different types of data. You'll work with different data structures and acquire and parse data from various locations. You'll also see how to reshape the layout of data and manipulate, summarize, and join data sets. Finally, we conclude with a quick primer on accessing and processing data from databases, conducting data exploration, and storing and retrieving data quickly using databases. The book includes practical examples on each of these points using simple and real-world data sets to give you an easier understanding. By the end of the book, you'll have a thorough understanding of all the data wrangling concepts and how to implement them in the best possible way. Style and approach This is a practical book on data wrangling designed to give you an insight into the practical application of data wrangling. It takes you through complex concepts and tasks in an accessible way, featuring information on a wide range of data wrangling techniques with Python and R

Clean Data


Author: Megan Squire
Publisher: Packt Publishing Ltd
ISBN: 1785289039
Category: Computers
Page: 272
View: 3648
DOWNLOAD NOW »
If you are a data scientist of any level, beginners included, and interested in cleaning up your data, this is the book for you! Experience with Python or PHP is assumed, but no previous knowledge of data cleaning is needed.

Regression Analysis with Python


Author: Luca Massaron,Alberto Boschetti
Publisher: Packt Publishing Ltd
ISBN: 1783980745
Category: Computers
Page: 312
View: 5542
DOWNLOAD NOW »
Learn the art of regression analysis with Python About This Book Become competent at implementing regression analysis in Python Solve some of the complex data science problems related to predicting outcomes Get to grips with various types of regression for effective data analysis Who This Book Is For The book targets Python developers, with a basic understanding of data science, statistics, and math, who want to learn how to do regression analysis on a dataset. It is beneficial if you have some knowledge of statistics and data science. What You Will Learn Format a dataset for regression and evaluate its performance Apply multiple linear regression to real-world problems Learn to classify training points Create an observation matrix, using different techniques of data analysis and cleaning Apply several techniques to decrease (and eventually fix) any overfitting problem Learn to scale linear models to a big dataset and deal with incremental data In Detail Regression is the process of learning relationships between inputs and continuous outputs from example data, which enables predictions for novel inputs. There are many kinds of regression algorithms, and the aim of this book is to explain which is the right one to use for each set of problems and how to prepare real-world data for it. With this book you will learn to define a simple regression problem and evaluate its performance. The book will help you understand how to properly parse a dataset, clean it, and create an output matrix optimally built for regression. You will begin with a simple regression algorithm to solve some data science problems and then progress to more complex algorithms. The book will enable you to use regression models to predict outcomes and take critical business decisions. Through the book, you will gain knowledge to use Python for building fast better linear models and to apply the results in Python or in any computer language you prefer. Style and approach This is a practical tutorial-based book. You will be given an example problem and then supplied with the relevant code and how to walk through it. The details are provided in a step by step manner, followed by a thorough explanation of the math underlying the solution. This approach will help you leverage your own data using the same techniques.

Python Data Science Essentials


Author: Alberto Boschetti,Luca Massaron
Publisher: Packt Publishing Ltd
ISBN: 1786462834
Category: Computers
Page: 378
View: 1835
DOWNLOAD NOW »
Become an efficient data science practitioner by understanding Python's key concepts About This Book Quickly get familiar with data science using Python 3.5 Save time (and effort) with all the essential tools explained Create effective data science projects and avoid common pitfalls with the help of examples and hints dictated by experience Who This Book Is For If you are an aspiring data scientist and you have at least a working knowledge of data analysis and Python, this book will get you started in data science. Data analysts with experience of R or MATLAB will also find the book to be a comprehensive reference to enhance their data manipulation and machine learning skills. What You Will Learn Set up your data science toolbox using a Python scientific environment on Windows, Mac, and Linux Get data ready for your data science project Manipulate, fix, and explore data in order to solve data science problems Set up an experimental pipeline to test your data science hypotheses Choose the most effective and scalable learning algorithm for your data science tasks Optimize your machine learning models to get the best performance Explore and cluster graphs, taking advantage of interconnections and links in your data In Detail Fully expanded and upgraded, the second edition of Python Data Science Essentials takes you through all you need to know to suceed in data science using Python. Get modern insight into the core of Python data, including the latest versions of Jupyter notebooks, NumPy, pandas and scikit-learn. Look beyond the fundamentals with beautiful data visualizations with Seaborn and ggplot, web development with Bottle, and even the new frontiers of deep learning with Theano and TensorFlow. Dive into building your essential Python 3.5 data science toolbox, using a single-source approach that will allow to to work with Python 2.7 as well. Get to grips fast with data munging and preprocessing, and all the techniques you need to load, analyse, and process your data. Finally, get a complete overview of principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users. Style and approach The book is structured as a data science project. You will always benefit from clear code and simplified examples to help you understand the underlying mechanics and real-world datasets.

Agile Data Science 2.0

Building Full-Stack Data Analytics Applications with Spark
Author: Russell Jurney
Publisher: "O'Reilly Media, Inc."
ISBN: 149196006X
Category: Computers
Page: 352
View: 3158
DOWNLOAD NOW »
Data science teams looking to turn research into useful analytics applications require not only the right tools, but also the right approach if they’re to succeed. With the revised second edition of this hands-on guide, up-and-coming data scientists will learn how to use the Agile Data Science development methodology to build data applications with Python, Apache Spark, Kafka, and other tools. Author Russell Jurney demonstrates how to compose a data platform for building, deploying, and refining analytics applications with Apache Kafka, MongoDB, ElasticSearch, d3.js, scikit-learn, and Apache Airflow. You’ll learn an iterative approach that lets you quickly change the kind of analysis you’re doing, depending on what the data is telling you. Publish data science work as a web application, and affect meaningful change in your organization. Build value from your data in a series of agile sprints, using the data-value pyramid Extract features for statistical models from a single dataset Visualize data with charts, and expose different aspects through interactive reports Use historical data to predict the future via classification and regression Translate predictions into actions Get feedback from users after each sprint to keep your project on track

Introducing Python

Modern Computing in Simple Packages
Author: Bill Lubanovic
Publisher: "O'Reilly Media, Inc."
ISBN: 1449361188
Category: Computers
Page: 484
View: 7957
DOWNLOAD NOW »
Easy to understand and fun to read, Introducing Python is ideal for beginning programmers as well as those new to the language. Author Bill Lubanovic takes you from the basics to more involved and varied topics, mixing tutorials with cookbook-style code recipes to explain concepts in Python 3. End-of-chapter exercises help you practice what you’ve learned. You’ll gain a strong foundation in the language, including best practices for testing, debugging, code reuse, and other development tips. This book also shows you how to use Python for applications in business, science, and the arts, using various Python tools and open source packages. Learn simple data types, and basic math and text operations Use data-wrangling techniques with Python’s built-in data structures Explore Python code structure, including the use of functions Write large programs in Python, with modules and packages Dive into objects, classes, and other object-oriented features Examine storage from flat files to relational databases and NoSQL Use Python to build web clients, servers, APIs, and services Manage system tasks such as programs, processes, and threads Understand the basics of concurrency and network programming

Bioinformatics Data Skills

Reproducible and Robust Research with Open Source Tools
Author: Vince Buffalo
Publisher: "O'Reilly Media, Inc."
ISBN: 1449367518
Category: Computers
Page: 538
View: 2266
DOWNLOAD NOW »
Learn the data skills necessary for turning large sequencing datasets into reproducible and robust biological findings. With this practical guide, you’ll learn how to use freely available open source tools to extract meaning from large complex biological data sets. At no other point in human history has our ability to understand life’s complexities been so dependent on our skills to work with and analyze data. This intermediate-level book teaches the general computational and data skills you need to analyze biological data. If you have experience with a scripting language like Python, you’re ready to get started. Go from handling small problems with messy scripts to tackling large problems with clever methods and tools Process bioinformatics data with powerful Unix pipelines and data tools Learn how to use exploratory data analysis techniques in the R language Use efficient methods to work with genomic range data and range operations Work with common genomics data file formats like FASTA, FASTQ, SAM, and BAM Manage your bioinformatics project with the Git version control system Tackle tedious data processing tasks with with Bash scripts and Makefiles

Learning the Pandas Library

Python Tools for Data Munging, Analysis, and Visual
Author: Matt Harrison
Publisher: Createspace Independent Publishing Platform
ISBN: 9781533598240
Category: Data mining
Page: 212
View: 3572
DOWNLOAD NOW »
Python is one of the top 3 tools that Data Scientists use. One of the tools in their arsenal is the Pandas library. This tool is popular because it gives you so much functionality out of the box. In addition, you can use all the power of Python to make the hard stuff easy! Learning the Pandas Library is designed to bring developers and aspiring data scientists who are anxious to learn Pandas up to speed quickly. It starts with the fundamentals of the data structures. Then, it covers the essential functionality. It includes many examples, graphics, code samples, and plots from real world examples. The Content Covers: Installation Data Structures Series CRUD Series Indexing Series Methods Series Plotting Series Examples DataFrame Methods DataFrame Statistics Grouping, Pivoting, and Reshaping Dealing with Missing Data Joining DataFrames DataFrame Examples Preliminary Reviews This is an excellent introduction benefitting from clear writing and simple examples. The pandas documentation itself is large and sometimes assumes too much knowledge, in my opinion. Learning the Pandas Library bridges this gap for new users and even for those with some pandas experience such as me. -Garry C. I have finished reading Learning the Pandas Library and I liked it... very useful and helpful tips even for people who use pandas regularly. -Tom Z.

Python for Data Science For Dummies


Author: John Paul Mueller,Luca Massaron
Publisher: John Wiley & Sons
ISBN: 1118843983
Category: Computers
Page: 432
View: 3448
DOWNLOAD NOW »
Unleash the power of Python for your data analysis projects with For Dummies! Python is the preferred programming language for data scientists and combines the best features of Matlab, Mathematica, and R into libraries specific to data analysis and visualization. Python for Data Science For Dummies shows you how to take advantage of Python programming to acquire, organize, process, and analyze large amounts of information and use basic statistics concepts to identify trends and patterns. You’ll get familiar with the Python development environment, manipulate data, design compelling visualizations, and solve scientific computing challenges as you work your way through this user-friendly guide. Covers the fundamentals of Python data analysis programming and statistics to help you build a solid foundation in data science concepts like probability, random distributions, hypothesis testing, and regression models Explains objects, functions, modules, and libraries and their role in data analysis Walks you through some of the most widely-used libraries, including NumPy, SciPy, BeautifulSoup, Pandas, and MatPlobLib Whether you’re new to data analysis or just new to Python, Python for Data Science For Dummies is your practical guide to getting a grip on data overload and doing interesting things with the oodles of information you uncover.

Data Science at the Command Line

Facing the Future with Time-Tested Tools
Author: Jeroen Janssens
Publisher: "O'Reilly Media, Inc."
ISBN: 1491947802
Category: Computers
Page: 212
View: 7397
DOWNLOAD NOW »
This hands-on guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. You’ll learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data. To get you started—whether you’re on Windows, OS X, or Linux—author Jeroen Janssens introduces the Data Science Toolbox, an easy-to-install virtual environment packed with over 80 command-line tools. Discover why the command line is an agile, scalable, and extensible technology. Even if you’re already comfortable processing data with, say, Python or R, you’ll greatly improve your data science workflow by also leveraging the power of the command line. Obtain data from websites, APIs, databases, and spreadsheets Perform scrub operations on plain text, CSV, HTML/XML, and JSON Explore data, compute descriptive statistics, and create visualizations Manage your data science workflow using Drake Create reusable tools from one-liners and existing Python or R code Parallelize and distribute data-intensive pipelines using GNU Parallel Model data with dimensionality reduction, clustering, regression, and classification algorithms

Learning pandas


Author: Michael Heydt
Publisher: Packt Publishing Ltd
ISBN: 1783985135
Category: Computers
Page: 504
View: 9997
DOWNLOAD NOW »
If you are a Python programmer who wants to get started with performing data analysis using pandas and Python, this is the book for you. Some experience with statistical analysis would be helpful but is not mandatory.

Data Algorithms

Recipes for Scaling Up with Hadoop and Spark
Author: Mahmoud Parsian
Publisher: "O'Reilly Media, Inc."
ISBN: 1491906154
Category: Computers
Page: 778
View: 7111
DOWNLOAD NOW »
If you are ready to dive into the MapReduce framework for processing large datasets, this practical book takes you step by step through the algorithms and tools you need to build distributed MapReduce applications with Apache Hadoop or Apache Spark. Each chapter provides a recipe for solving a massive computational problem, such as building a recommendation system. You’ll learn how to implement the appropriate MapReduce solution with code that you can use in your projects. Dr. Mahmoud Parsian covers basic design patterns, optimization techniques, and data mining and machine learning solutions for problems in bioinformatics, genomics, statistics, and social network analysis. This book also includes an overview of MapReduce, Hadoop, and Spark. Topics include: Market basket analysis for a large set of transactions Data mining algorithms (K-means, KNN, and Naive Bayes) Using huge genomic data to sequence DNA and RNA Naive Bayes theorem and Markov chains for data and market prediction Recommendation algorithms and pairwise document similarity Linear regression, Cox regression, and Pearson correlation Allelic frequency and mining DNA Social network analysis (recommendation systems, counting triangles, sentiment analysis)

Mining the Social Web

Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites
Author: Matthew A. Russell,Matthew Russell
Publisher: "O'Reilly Media, Inc."
ISBN: 1449388345
Category: Computers
Page: 332
View: 4205
DOWNLOAD NOW »
Provides information on data analysis from a vareity of social networking sites, including Facebook, Twitter, and LinkedIn.

Effective Computation in Physics

Field Guide to Research with Python
Author: Anthony Scopatz,Kathryn D. Huff
Publisher: "O'Reilly Media, Inc."
ISBN: 1491901586
Category: Science
Page: 552
View: 2472
DOWNLOAD NOW »
More physicists today are taking on the role of software developer as part of their research, but software development isn’t always easy or obvious, even for physicists. This practical book teaches essential software development skills to help you automate and accomplish nearly any aspect of research in a physics-based field. Written by two PhDs in nuclear engineering, this book includes practical examples drawn from a working knowledge of physics concepts. You’ll learn how to use the Python programming language to perform everything from collecting and analyzing data to building software and publishing your results. In four parts, this book includes: Getting Started: Jump into Python, the command line, data containers, functions, flow control and logic, and classes and objects Getting It Done: Learn about regular expressions, analysis and visualization, NumPy, storing data in files and HDF5, important data structures in physics, computing in parallel, and deploying software Getting It Right: Build pipelines and software, learn to use local and remote version control, and debug and test your code Getting It Out There: Document your code, process and publish your findings, and collaborate efficiently; dive into software licenses, ownership, and copyright procedures

Learning R

A Step-by-Step Function Guide to Data Analysis
Author: Richard Cotton
Publisher: "O'Reilly Media, Inc."
ISBN: 1449357180
Category: Computers
Page: 400
View: 934
DOWNLOAD NOW »
Learn how to perform data analysis with the R language and software environment, even if you have little or no programming experience. With the tutorials in this hands-on guide, you’ll learn how to use the essential R tools you need to know to analyze data, including data types and programming concepts. The second half of Learning R shows you real data analysis in action by covering everything from importing data to publishing your results. Each chapter in the book includes a quiz on what you’ve learned, and concludes with exercises, most of which involve writing R code. Write a simple R program, and discover what the language can do Use data types such as vectors, arrays, lists, data frames, and strings Execute code conditionally or repeatedly with branches and loops Apply R add-on packages, and package your own work for others Learn how to clean data you import from a variety of sources Understand data through visualization and summary statistics Use statistical models to pass quantitative judgments about data and make predictions Learn what to do when things go wrong while writing data analysis code