Datenanalyse mit Python

Auswertung von Daten mit Pandas, NumPy und IPython
Author: Wes McKinney
Publisher: O'Reilly
ISBN: 3960102143
Category: Computers
Page: 542
View: 5465
DOWNLOAD NOW »
Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.

Einführung in Data Science

Grundprinzipien der Datenanalyse mit Python
Author: Joel Grus
Publisher: O'Reilly
ISBN: 3960100256
Category: Computers
Page: 352
View: 831
DOWNLOAD NOW »
Dieses Buch führt Sie in Data Science ein, indem es grundlegende Prinzipien der Datenanalyse erläutert und Ihnen geeignete Techniken und Werkzeuge vorstellt. Sie lernen nicht nur, wie Sie Bibliotheken, Frameworks, Module und Toolkits konkret einsetzen, sondern implementieren sie auch selbst. Dadurch entwickeln Sie ein tieferes Verständnis für die Zusammenhänge und erfahren, wie essenzielle Tools und Algorithmen der Datenanalyse im Kern funktionieren. Falls Sie Programmierkenntnisse und eine gewisse Sympathie für Mathematik mitbringen, unterstützt Joel Grus Sie dabei, mit den mathematischen und statistischen Grundlagen der Data Science vertraut zu werden und sich Programmierfähigkeiten anzueignen, die Sie für die Praxis benötigen. Dabei verwendet er Python: Die weitverbreitete Sprache ist leicht zu erlernen und bringt zahlreiche Bibliotheken für Data Science mit. Aus dem Inhalt: - Absolvieren Sie einen Crashkurs in Python - Lernen Sie die Grundlagen von linearer Algebra, Statistik und Wahrscheinlichkeitsrechnung kennen und erfahren Sie, wie diese in Data Science eingesetzt werden - Sammeln, untersuchen, bereinigen, bearbeiten und manipulieren Sie Daten - Tauchen Sie in die Welt des maschinellen Lernens ein - Implementieren Sie Modelle wie k-nearest Neighbors, Naive Bayes, lineare und logistische Regression, Entscheidungsbäume, neuronale Netzwerke und Clustering - Entdecken Sie Empfehlungssysteme, Sprachverarbeitung, Netzwerkanalyse, MapReduce und Datenbanken

Data Science mit Python für Dummies


Author: John Paul Mueller,Luca Massaron
Publisher: John Wiley & Sons
ISBN: 3527807144
Category: Mathematics
Page: 424
View: 7062
DOWNLOAD NOW »
Sie wollen sich ernsthaft mit wissenschaftlicher Datenanalyse beschäftigen und wissen, dass Sie da an Python nur schwer vorbeikommen? Dann ist dieses das richtige Buch für Sie. John Paul Mueller erklärt Ihnen, was Sie in Python beherrschen müssen, um sich der Datenanalyse zu widmen inklusive Objekten, Funktionen, Modulen und Bibliotheken. Außerdem erläutert er die wichtigsten Bibliotheken für die Datenanalyse wie NumPy, SciPy, BeautifulSoup, Pandas, und MatPlobLib. So lernen Sie Python für die Datenanalyse richtig einsetzen.

Data Science mit Python

Das Handbuch für den Einsatz von IPython, Jupyter, NumPy, Pandas, Matplotlib und Scikit-Learn
Author: Jake VanderPlas
Publisher: MITP-Verlags GmbH & Co. KG
ISBN: 3958456979
Category: Computers
Page: 552
View: 9272
DOWNLOAD NOW »
Die wichtigsten Tools für die Datenanalyse und-bearbeitung im praktischen Einsatz Python effizient für datenintensive Berechnungen einsetzen mit IPython und Jupyter Laden, Speichern und Bearbeiten von Daten und numerischen Arrays mit NumPy und Pandas Visualisierung von Daten mit Matplotlib Python ist für viele die erste Wahl für Data Science, weil eine Vielzahl von Ressourcen und Bibliotheken zum Speichern, Bearbeiten und Auswerten von Daten verfügbar ist. In diesem Buch erläutert der Autor den Einsatz der wichtigsten Tools. Für Datenanalytiker und Wissenschaftler ist dieses umfassende Handbuch von unschätzbarem Wert für jede Art von Berechnung mit Python sowie bei der Erledigung alltäglicher Aufgaben. Dazu gehören das Bearbeiten, Umwandeln und Bereinigen von Daten, die Visualisierung verschiedener Datentypen und die Nutzung von Daten zum Erstellen von Statistiken oder Machine-Learning-Modellen. Dieses Handbuch erläutert die Verwendung der folgenden Tools: ● IPython und Jupyter für datenintensive Berechnungen ● NumPy und Pandas zum effizienten Speichern und Bearbeiten von Daten und Datenarrays in Python ● Matplotlib für vielfältige Möglichkeiten der Visualisierung von Daten ● Scikit-Learn zur effizienten und sauberen Implementierung der wichtigsten und am meisten verbreiteten Algorithmen des Machine Learnings Der Autor zeigt Ihnen, wie Sie die zum Betreiben von Data Science verfügbaren Pakete nutzen, um Daten effektiv zu speichern, zu handhaben und Einblick in diese Daten zu gewinnen. Grundlegende Kenntnisse in Python werden dabei vorausgesetzt. Leserstimme zum Buch: »Wenn Sie Data Science mit Python betreiben möchten, ist dieses Buch ein hervorragender Ausgangspunkt. Ich habe es sehr erfolgreich beim Unterrichten von Informatik- und Statistikstudenten eingesetzt. Jake geht weit über die Grundlagen der Open-Source-Tools hinaus und erläutert die grundlegenden Konzepte, Vorgehensweisen und Abstraktionen in klarer Sprache und mit verständlichen Erklärungen.« – Brian Granger, Physikprofessor, California Polytechnic State University, Mitbegründer des Jupyter-Projekts

R für Data Science

Daten importieren, bereinigen, umformen, modellieren und visualisieren
Author: Hadley Wickham,Garrett Grolemund
Publisher: O'Reilly
ISBN: 3960101546
Category: Computers
Page: 502
View: 3887
DOWNLOAD NOW »
Lernen Sie, wie Sie mit R Ihre Rohdaten in Erkenntnisse und Wissen umwandeln. Dieses Buch führt Sie ein in R, RStudio und tidyverse – eine Sammlung von R-Paketen, die ineinandergreifen, um Data Science schnell, flüssig und komfortabel zu machen. R für Data Science ist geeignet für Leser ohne vorherige Programmierkenntnisse und zielt darauf ab, dass Sie Techniken der Data Science so schnell wie möglich in der Praxis umsetzen können. Die Autoren Hadley Wickham und Garrett Grolemund zeigen, wie Sie Daten importieren, aufbereiten, untersuchen und modellieren und wie Sie die Ergebnisse kommunizieren können. So bekommen Sie einen vollständigen Überblick über den Data-Science-Zyklus und die Tools, die für die Detailarbeit erforderlich sind.

Datenvisualisierung mit Tableau


Author: Alexander Loth
Publisher: MITP-Verlags GmbH & Co. KG
ISBN: 3958457878
Category:
Page: N.A
View: 7096
DOWNLOAD NOW »


Datenintensive Anwendungen designen

Konzepte für zuverlässige, skalierbare und wartbare Systeme
Author: Martin Kleppmann
Publisher: O'Reilly
ISBN: 3960101848
Category: Computers
Page: 652
View: 985
DOWNLOAD NOW »
Daten stehen heute im Mittelpunkt vieler Herausforderungen im Systemdesign. Dabei sind komplexe Fragen wie Skalierbarkeit, Konsistenz, Zuverlässigkeit, Effizienz und Wartbarkeit zu klären. Darüber hinaus verfügen wir über eine überwältigende Vielfalt an Tools, einschließlich relationaler Datenbanken, NoSQL-Datenspeicher, Stream-und Batchprocessing und Message Broker. Aber was verbirgt sich hinter diesen Schlagworten? Und was ist die richtige Wahl für Ihre Anwendung?In diesem praktischen und umfassenden Leitfaden unterstützt Sie der Autor Martin Kleppmann bei der Navigation durch dieses schwierige Terrain, indem er die Vor-und Nachteile verschiedener Technologien zur Verarbeitung und Speicherung von Daten aufzeigt. Software verändert sich ständig, die Grundprinzipien bleiben aber gleich. Mit diesem Buch lernen Softwareentwickler und -architekten, wie sie die Konzepte in der Praxis umsetzen und wie sie Daten in modernen Anwendungen optimal nutzen können.Inspizieren Sie die Systeme, die Sie bereits verwenden, und erfahren Sie, wie Sie sie effektiver nutzen könnenTreffen Sie fundierte Entscheidungen, indem Sie die Stärken und Schwächen verschiedener Tools kennenlernenSteuern Sie die notwenigen Kompromisse in Bezug auf Konsistenz, Skalierbarkeit, Fehlertoleranz und KomplexitätMachen Sie sich vertraut mit dem Stand der Forschung zu verteilten Systemen, auf denen moderne Datenbanken aufbauenWerfen Sie einen Blick hinter die Kulissen der wichtigsten Onlinedienste und lernen Sie von deren Architekturen

Machine Learning mit Python und Scikit-Learn und TensorFlow

Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning
Author: Sebastian Raschka,Vahid Mirjalili
Publisher: MITP-Verlags GmbH & Co. KG
ISBN: 3958457355
Category: Computers
Page: 584
View: 6540
DOWNLOAD NOW »
Datenanalyse mit ausgereiften statistischen Modellen des Machine Learnings Anwendung der wichtigsten Algorithmen und Python-Bibliotheken wie NumPy, SciPy, Scikit-learn, TensorFlow, Matplotlib, Pandas und Kera Best Practices zur Optimierung Ihrer Machine-Learning-Algorithmen Machine Learning und Predictive Analytics verändern die Arbeitsweise von Unternehmen grundlegend. Die Fähigkeit, in komplexen Daten Trends und Muster zu erkennen, ist heutzutage für den langfristigen geschäftlichen Erfolg ausschlaggebend und entwickelt sich zu einer der entscheidenden Wachstumsstrategien. Die zweite Auflage dieses Buchs berücksichtigt die jüngsten Entwicklungen und Technologien, die für Machine Learning, Neuronale Netze und Deep Learning wichtig sind. Dies betrifft insbesondere die neuesten Open-Source-Bibliotheken wie Scikit-learn, Keras und TensorFlow. Python zählt zu den führenden Programmiersprachen in den Bereichen Machine Learning, Data Science und Deep Learning und ist besonders gut dazu geeignet, grundlegende Erkenntnisse aus Ihren Daten zu gewinnen sowie ausgefeilte Algorithmen und statistische Modelle auszuarbeiten, die neue Einsichten liefern und wichtige Fragen beantworten. Die Autoren erläutern umfassend den Einsatz von Machine-Learning- und Deep-Learning-Algorithmen und wenden diese anhand zahlreicher Beispiele praktisch an. Dafür behandeln sie in diesem Buch ein breites Spektrum leistungsfähiger Python-Bibliotheken wie Scikit-learn, Keras und TensorFlow. Sie lernen detailliert, wie Sie Python für maschinelle Lernverfahren einsetzen und dabei eine Vielzahl von statistischen Modellen verwenden.

Praktische Algorithmik mit Python


Author: Tobias Häberlein
Publisher: Walter de Gruyter
ISBN: 3486714449
Category: Computers
Page: 345
View: 3002
DOWNLOAD NOW »
Insbesondere die praktische Informatik lebt vom Ausprobieren und Selbermachen. Darauf baut das didaktische Konzept dieses Buches auf: Alle wichtigen klassischen Algorithmen werden so erklärt, dass sie direkt mit Python geübt werden können. Durch diese unmittelbare praktische Anwendung der theoretischen Inhalte gestaltet sich der Lernprozess deutlich interessanter und effektiver.

Machine Learning mit Python

Das Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning
Author: Sebastian Raschka
Publisher: MITP-Verlags GmbH & Co. KG
ISBN: 3958454240
Category: Computers
Page: 424
View: 2923
DOWNLOAD NOW »


Datenbankentwicklung lernen mit SQL Server 2016

Der praxisorientierte Grundkurs
Author: Robert Panther
Publisher: O'Reilly
ISBN: 3960100825
Category: Computers
Page: 456
View: 827
DOWNLOAD NOW »
SQL Server 2016 und die kostenlose Version SQL Server 2016 Express sind ideal, um in die professionelle Datenbankentwicklung einzusteigen. Sie können mit ihnen komplexe Datenbankprojekte verwirklichen, die die Funktionalität einer Desktop-Datenbank wie Microsoft Access deutlich übersteigen. Wenn Sie tiefer in die Datenbankentwicklung mit einem professionellen Datenbankserver einsteigen wollen, ist dieses Buch genau das Richtige für Sie. Es vermittelt leicht verständlich sowohl die Datenbankgrundlagen als auch das Programmierwissen, das Sie benötigen, um die umfangreichen Möglichkeiten von SQL Server 2016 zu nutzen. Aufgrund des didaktisch durchdachten Konzepts mit vielen Übungen und Praxistipps ermöglicht dieses Buch Ihnen eine fundierte Einarbeitung in die Entwicklung von Datenbanken. Das Buch basiert auf der kostenfrei erhältlichen Version SQL Server 2016 Express, eignet sich aber auch für größere SQL-Server-Editionen. Aus dem Inhalt: - Neuerungen bei SQL Server 2016 - Installation und erste Schritte - Datenbanken und Tabellen erstellen und bearbeiten - Daten anzeigen und ändern - Sichten erstellen und verwenden - erweiterte SQL-Features (CTEs, Sequenzen, Temporal Tables etc.) - komplexe Datentypen (XML und JSON) - Debugging und Fehlerbehandlung - Sperren, Transaktionen und Deadlocks - gespeicherte Prozeduren, Funktionen, Trigger und Cursor - Datenbankadministration mit SQL, Benutzer, Rollen und Rechte - Daten sichern und bewegen, Reporting - Zusammenarbeit mit anderen SQL Server-Instanzen und -Editionen - Datenebenenanwendungen - SQL Server Data Tools - SQL Server und .NET

Einführung in TensorFlow

Deep-Learning-Systeme programmieren, trainieren, skalieren und deployen
Author: Tom Hope,Yehezkel S. Resheff,Itay Lieder
Publisher: O'Reilly
ISBN: 3960101813
Category: Computers
Page: 238
View: 8115
DOWNLOAD NOW »
Deep-Learning-Netze, die mit großen Datenmengen angelernt wurden, lösen komplexe Aufgaben mit erstaunlicher Genauigkeit. TensorFlow ist die führende Open-Source-Bibliothek zum Erstellen und Trainieren neuronaler Deep-Learning-Netze z.B. für die Sprach- und Bilderkennung, die Verarbeitung natürlicher Sprache (NLP) oder die vorhersagende Datenanalyse. Dieses Buch bietet einer breiten technisch orientierten Leserschaft einen praxisnahen Zugang zu den Grundlagen von TensorFlow.Sie erarbeiten zunächst einige einfache Beispielaufgaben mit TensorFlow und tauchen anschließend tiefer in Themen ein wie die Architektur neuronaler Netze, die Visualisierung mit TensorBoard, Abstraktionsbibliotheken für TensorFlow oder Multithread-Pipelines zur Dateneingabe. Wenn Sie dieses Buch durchgearbeitet haben, sind Sie in der Lage, Deep-Learning-Systeme mit TensorFlow zu erstellen und im Produktivbetrieb einzusetzen.

Statistik mit R

Eine praxisorientierte Einführung in R
Author: Joachim Zuckarelli
Publisher: O'Reilly
ISBN: 3960101422
Category: Computers
Page: 366
View: 6510
DOWNLOAD NOW »
Erfahren Sie in diesem Buch, was Sie wirklich wissen müssen, um statistische Analysen mit R erfolgreich durchzuführen. Diese pragmatische Einführung in die statistische Arbeit mit R eignet sich insbesondere für Studenten und Wissenschaftler aus dem wirtschafts-, sozialoder politikwissenschaftlichen Bereich, aber auch für diejenigen, die beruflich mit Statistik zu tun haben, weil sie zum Beispiel Finanzmarktdaten auswerten oder an Marktforschungsstudien arbeiten. Anders als viele andere Einführungen in R vermittelt Ihnen dieses Buch nicht nur die Grundlagen der Sprache R, sondern verknüpft dies mit der kompakten Darstellung zentraler Methoden der Statistik: Statistische Kernkonzepte werden gut nachvollziehbar beschrieben, bevor sie mit R angewandt werden. Eine Interpretation des R-Outputs aus statistischer Sicht sowie die Erläuterung der häufigsten Fehlermeldungen und ihrer Ursachen trägt dazu bei, Konzepte besser zu verstehen und Zusammenhänge zu erkennen. Auf diese Weise werden Sie rasch in die Lage versetzt, produktiv mit R zu arbeiten. Themen des Buchs sind: - Mit Daten arbeiten: Ihre Arbeit mit R organisieren, Einlesen von Daten in R, Datenspeicherung - Daten aufbereiten: unterschiedliche Datensätze kombinieren, Daten filtern, sortieren und bereinigen - Daten deskriptiv analysieren: den Datensatz kennenlernen, Lage-, Streuungs-und Zusammenhangsmaße berechnen und interpretieren - Kontinuierliche Daten analysieren: Lineare Regressionsmodelle, Hypothesentests, Diagnose und Behandlung von Annahmeverletzungen - Kategoriale Daten analysieren: Lineares Wahrscheinlichkeitsmodell, Logit-und Probit-Modelle - Ergebnisse präsentieren: Ergebnisse in Tabellen und Grafiken aussagekräftig präsentieren

Praxiseinstieg Deep Learning

Mit Python, Caffe, TensorFlow und Spark eigene Deep-Learning-Anwendungen erstellen
Author: Ramon Wartala
Publisher: O'Reilly
ISBN: 3960101570
Category: Computers
Page: 226
View: 1904
DOWNLOAD NOW »
Deep Learning ist ein Teilbereich des Machine Learning und basiert auf künstlichen neuronalen Netzen. Dieser praktische Leitfaden bietet einen schnellen Einstieg in die Schlüsseltechnologie und erschließt Grundlagen und Arbeitsweisen von Deep Learning. Anhand Python-basierter Beispielanwendungen wird der Umgang mit den Frameworks Caffe/Caffe2 und TensorFlow gezeigt. Einfache, alltagstaugliche Beispiele laden zum Nachprogrammieren ein. Darüber hinaus erfahren Sie, warum moderne Grafikkarten, Big Data und Cloud Computing beim Deep Learning so wichtig sind. Wenn Sie bereits mit Python, NumPy und matplotlib arbeiten, ermöglicht Ihnen dieses Buch, praktische Erfahrungen mit Deep-Learning-Anwendungen zu machen. Deep Learning – die Hintergründe - Lernmethoden, die Deep Learning zugrunde liegen - Aktuelle Anwendungsfelder wie maschinelle Übersetzungen, Sprach- und Bilderkennung bei Google, Facebook, IBM oder Amazon Der Werkzeugkasten mit Docker - Der Docker-Container zum Buch: Alle nötigen Tools und Programme sind bereits installiert, damit Sie die Beispiele des Buchs und eigene Deep-Learning-Anwendungen leicht ausführen können. - Die Arbeitsumgebung kennenlernen: Jupyter Notebook, Beispieldatensätze, Web Scraping Der Praxiseinstieg - Einführung in Caffe/Caffe2 und TensorFlow - Deep-Learning-Anwendungen nachprogrammieren: Handschrifterkennung, Bilderkennung und -klassifizierung, Deep Dreaming - Lösungen für Big-Data-Szenarien: verteilte Anwendungen, Spark, Cloud-Systeme - Modelle in produktive Systeme überführen

Programmierung in Python

Ein kompakter Einstieg für die Praxis
Author: Ralph Steyer
Publisher: Springer-Verlag
ISBN: 3658207051
Category: Computers
Page: 257
View: 8457
DOWNLOAD NOW »
Wer heute das Programmieren lernen möchte, kommt nicht daran vorbei, sich mit einer der beliebtesten Programmiersprachen für Einsteiger und Profis zu befassen: Python. Mit Python hat ihr Erfinder, Guido van Rossum, einen Nerv der Zeit getroffen, denn das Konzept dahinter bietet viele Ansätze, Lösungen und Vorgehensweise für Probleme, die andere Sprachen so nicht integrieren. Das Potential dieser einfachen und übersichtlichen Programmiersprache haben auch viele Universitäten erkannt, die mittlerweile in den Anfängerkursen der Informatik-bezogenen Studiengänge Python statt Java als Einsteigersprache lehren. Der klare Programmierstil legt darüber hinaus eine hervorragende Grundlage für das spätere Erlernen weiterer Sprachen. Denn Python unterstützt nicht nur die objektorientierte und aspektorientierte, sondern auch die strukturierte und funktionale Programmierung. So wird der Programmierer nicht zu einem einzigen Programmierstil gezwungen, sondern kann flexibel das am besten geeignete Paradigma für die jeweilige Aufgabe wählen. Der universelle Zugang, der es möglich macht, die Erfahrungen aus anderen Programmierkonzepten mehr oder weniger direkt weiter zu nutzen, ist ein weiterer Grund für den Erfolg von Python. Dieses Buch ist ein idealer Einstieg in die Programmierung mit Python. Ausführlich erläutert der Autor die elementaren Grundlagen, die nötig sind, um mit dieser Sprache Programme zu erstellen und zu pflegen. Daneben zeigt er, wie sich die OOP mit Python realisieren lässt und wie man Module und API-Schnittstellen integriert. Diverse weiterführende Themen wie die Erstellung grafischer Oberflächen oder der Zugriff auf Dateien und Datenbanken runden das Fachbuch ab. Einfache Beispiele veranschaulichen die grundsätzliche Anwendung der verschiedenen Techniken und machen das Buch dadurch zu einer unbedingten Empfehlung für Einsteiger und Praktiker, die die Programmierung mit Python lernen wollen.

Einführung in Machine Learning mit Python

Praxiswissen Data Science
Author: Andreas C. Müller,Sarah Guido
Publisher: O'Reilly
ISBN: 3960101120
Category: Computers
Page: 378
View: 311
DOWNLOAD NOW »
Machine Learning ist zu einem wichtigen Bestandteil vieler kommerzieller Anwendungen und Forschungsprojekte geworden, von der medizinischen Diagnostik bis hin zur Suche nach Freunden in sozialen Netzwerken. Um Machine-Learning-Anwendungen zu entwickeln, braucht es keine großen Expertenteams: Wenn Sie Python-Grundkenntnisse mitbringen, zeigt Ihnen dieses Praxisbuch, wie Sie Ihre eigenen Machine-Learning-Lösungen erstellen. Mit Python und der scikit-learn-Bibliothek erarbeiten Sie sich alle Schritte, die für eine erfolgreiche Machine-Learning-Anwendung notwendig sind. Die Autoren Andreas Müller und Sarah Guido konzentrieren sich bei der Verwendung von Machine-Learning-Algorithmen auf die praktischen Aspekte statt auf die Mathematik dahinter. Wenn Sie zusätzlich mit den Bibliotheken NumPy und matplotlib vertraut sind, hilft Ihnen dies, noch mehr aus diesem Tutorial herauszuholen. Das Buch zeigt Ihnen: - grundlegende Konzepte und Anwendungen von Machine Learning - Vor- und Nachteile weit verbreiteter maschineller Lernalgorithmen - wie sich die von Machine Learning verarbeiteten Daten repräsentieren lassen und auf welche Aspekte der Daten Sie sich konzentrieren sollten - fortgeschrittene Methoden zur Auswertung von Modellen und zum Optimieren von Parametern - das Konzept von Pipelines, mit denen Modelle verkettet und Arbeitsabläufe gekapselt werden - Arbeitsmethoden für Textdaten, insbesondere textspezifische Verarbeitungstechniken - Möglichkeiten zur Verbesserung Ihrer Fähigkeiten in den Bereichen Machine Learning und Data Science Dieses Buch ist eine fantastische, super praktische Informationsquelle für jeden, der mit Machine Learning in Python starten möchte – ich wünschte nur, es hätte schon existiert, als ich mit scikit-learn anfing! Hanna Wallach, Senior Researcher, Microsoft Research

Statistische und numerische Methoden der Datenanalyse


Author: Volker Blobel,Erich Lohrmann
Publisher: Springer-Verlag
ISBN: 3663056902
Category: Technology & Engineering
Page: 358
View: 8416
DOWNLOAD NOW »
Der Umfang des Datenmaterials in Wissenschaft und Technik nimmt immer schneller zu; seine Auswertung und Beurteilung erweisen sich zunehmend als die eigentliche Schwierigkeit bei vielen wichtigen Problemen. Dem steht zwar ein bisher ungebrochenes Anwachsen von Rechnerleistung und die zunehmende Verfügbarkeit mächtiger Algorithmen gegenüber, aber es ist oft nicht einfach, von diesen Hilfsmitteln den richtigen und professionellen Gebrauch zu machen. Dieses Buch, entstanden aus der Praxis der Verarbeitung großer Datenmengen, will eine Einführung und Hilfe auf diesem Gebiet geben.

Python 3 - Intensivkurs

Projekte erfolgreich realisieren
Author: Mark Pilgrim
Publisher: Springer-Verlag
ISBN: 9783642043772
Category: Computers
Page: 351
View: 4414
DOWNLOAD NOW »
Python ist eine vollwertige Programmiersprache, mit der sich auch größere Anwendungen entwickeln lassen. In den letzten Jahren hat sie an Beliebtheit gewonnen, und mit Python 3 steht eine stark erweiterte Version zur Verfügung. In dem Band werden die Werkzeuge und Programmiermöglichkeiten praxisorientiert vorgestellt. Jedes Kapitel beginnt mit einem vollwertigen, lauffähigen Codebeispiel, das jeweils ausführlich analysiert wird. Im Vordergrund stehen die unmittelbare praktische Anwendung und die Realisierung von Projekten mit Python 3.

MongoDB

Der praktische Einstieg
Author: Tobias Trelle
Publisher: dpunkt.verlag
ISBN: 3864915341
Category: Computers
Page: 290
View: 5789
DOWNLOAD NOW »
MongoDB ist die derzeit populärste dokumentenorientierte Datenbank im NoSQL-Bereich. Während klassische Datenbankmanagementsysteme bei großen Datenmengen an Skalierungs- und Leistungsgrenzen stoßen, kann MongoDB auch im Petabyte-Bereich und darüber noch effizient arbeiten und bietet viele Features, die die Verarbeitung von Big Data erleichtern. Kompakt und anhand von zahlreichen Beispielen führt Sie dieses Buch in die Nutzung von MongoDB ein. Es beginnt mit einem Schnellstart, in dem Sie MongoDB installieren und erste Erfahrungen im Umgang mit semistrukturierten Daten und den Vorteilen der Schemafreiheit sammeln. Darauf aufbauend behandelt das Buch u.a. folgende Themen: - Collections & Dokumente - Queries & Indizes - Replikation (Ausfallsicherheit) - Sharding (horizontale Skalierung) - Schema-Design - Map/Reduce - Aggregation Framework Darüber hinaus bietet das Buch am Beispiel der Programmiersprachen Java und Ruby Praxistipps zur Verwendung des API von MongoDB. Nach der Lektüre können Sie einschätzen, in welchen komplexeren Anwendungsfällen sich der Einsatz von MongoDB lohnt, Sie kennen alle wichtigen Features und sind in der Lage, eigene MongoDB-Anwendungen zu erstellen.

Visual Business Analytics

Effektiver Zugang zu Daten und Informationen
Author: Jörn Kohlhammer,Dirk U. Proff,Andreas Wiener
Publisher: dpunkt.verlag
ISBN: 3960885202
Category: Computers
Page: 288
View: 7144
DOWNLOAD NOW »
Business-Intelligence-Lösungen sind für Unternehmen unabdingbar, um Datenmengen in vertretbarer Zeit zu analysieren und daraus resultierend Entscheidungen zu treffen.Dieses Buch zeigt den Weg auf, wie aus Daten mittels Visualisierung entscheidungsrelevante Informationen für den Empfänger werden. Neue, interaktive und grafische Darstellungen tragen dazu bei, dass Entscheider ihr Wissen und ihre Fähigkeiten besser nutzen können, um einen echten Mehrwert für ihr Unternehmen zu generieren.Die Autoren bieten eine fundierte Einführung in das Thema und geben einen praxisnahen Überblick über Visual Business Analytics mit seinen drei Teilgebieten: Information Design, Visual Business Intelligence und Visual Analytics. Sie erläutern anhand vieler Beispiele aus Business-Intelligence-Anwendungsszenarien, welche Darstellungsformen jeweils geeignet sind, um komplexe Zusammenhänge abzubilden, wie Unternehmen Visual Business Analytics erfolgreich nutzen können und welche zukünftigen Möglichkeiten sich durch interaktive Darstellungen ergeben.Im Einzelnen werden behandelt:Visualisierung von Daten und InformationenReporting und Information DesignDiagrammtypen und -eigenschaftenInformation-Design-RichtlinienVisual Business IntelligenceInteraktive VisualisierungDashboard-DesignVisual Analytics in Big-Data-SzenarienAnwendungsbeispiele mit aktuellen Business-Intelligence-Werkzeugen im Bereich Visual Analytics und ein Blick in die Forschung runden das Buch ab.Die 2. Auflage wurde durchgehend überarbeitet, aktualisiert und um neue Themen wie Visualisierungsstandards und maschinelles Lernen erweitert.