Fluid Mechanics

Fundamentals and Applications
Author: Yunus A. Çengel,John M. Cimbala
Publisher: N.A
ISBN: 9780071284219
Category: Akışkanlar dinamiği
Page: 980
View: 7118
DOWNLOAD NOW »
Overview This book communicates directly with tomorrow's engineers in a simple yet precise manner. The text covers the basic principles and equations of fluid mechanics in the context of numerous and diverse real-world engineering examples. helps students develop an intuitive understanding of fluid mechanics by emphasizing the physical underpinning of processes and by utilizing numerous informative figures, photographs, and other visual aids to reinforce the basic concepts. Features Visual nature of fluid mechanics by featuring more illustrations and photographs than other fluid mechanics texts. Current research with our Application Spotlight feature, written by guest authors and designed to show how fluid mechanics has diverse applications in a wide variety of fields. Computational fluid dynamics (CFD) with examples throughout the text generated by CFD software and end-of-chapter problems throughout the book using FLOWLAB, a student-friendly, template-driven CFD program. An introductory chapter also introduces students to the capabilities and limitations of CFD as an engineering tool. Precise definitions of key terms with an end-of-book glossary providing definitions of selected fundamental fluid mechanics terms and concepts. Physical intuition to help students develop a sense of the underlying physical mechanisms and a mastery of solving practical problems that an engineer is likely to face in the real world. Topic flexibility to facilitate different approaches to the course. After covering the basics for all majors, the text offers robust coverage to allow for mechanical, civil, or aeronautics and aerospace engineering approaches.

Fluid Mechanics: Fundamentals and Applications


Author: Yunus Cengel,John Cimbala
Publisher: McGraw-Hill Education
ISBN: 9781259696534
Category: Technology & Engineering
Page: 1056
View: 9015
DOWNLOAD NOW »
Cengel and Cimbala's Fluid Mechanics Fundamentals and Applications, communicates directly with tomorrow's engineers in a simple yet precise manner, while covering the basic principles and equations of fluid mechanics in the context of numerous and diverse real-world engineering examples. The text helps students develop an intuitive understanding of fluid mechanics by emphasizing the physics, using figures, numerous photographs and visual aids to reinforce the physics. The highly visual approach enhances the learning of fluid mechanics by students. This text distinguishes itself from others by the way the material is presented - in a progressive order from simple to more difficult, building each chapter upon foundations laid down in previous chapters. In this way, even the traditionally challenging aspects of fluid mechanics can be learned effectively. McGraw-Hill Education's Connect, is also available as an optional, add on item. Connect is the only integrated learning system that empowers students by continuously adapting to deliver precisely what they need, when they need it, how they need it, so that class time is more effective. Connect allows the professor to assign homework, quizzes, and tests easily and automatically grades and records the scores of the student's work. Problems are randomized to prevent sharing of answers an may also have a "multi-step solution" which helps move the students' learning along if they experience difficulty.

Loose Leaf for Fluid Mechanics Fundamentals and Applications


Author: John Cimbala,Yunus Cengel
Publisher: McGraw-Hill Education
ISBN: 9780077595463
Category: Technology & Engineering
Page: 1000
View: 7388
DOWNLOAD NOW »
Covers the basic principles and equations of fluid mechanics in the context of numerous and diverse real-world engineering examples. This title helps students develop an intuitive understanding of fluid mechanics by emphasizing the physics, using figures, numerous photographs and visual aids to reinforce the physics.

Fluid Mechanics Fundamentals and Applications

Third Edition
Author: Yunus Cengel,John Cimbala
Publisher: McGraw-Hill Higher Education
ISBN: 0077595416
Category: Technology & Engineering
Page: N.A
View: 6385
DOWNLOAD NOW »
Cengel and Cimbala's Fluid Mechanics Fundamentals and Applications, communicates directly with tomorrow's engineers in a simple yet precise manner. The text covers the basic principles and equations of fluid mechanics in the context of numerous and diverse real-world engineering examples. The text helps students develop an intuitive understanding of fluid mechanics by emphasizing the physics, using figures, numerous photographs and visual aids to reinforce the physics. The highly visual approach enhances the learning of Fluid mechanics by students. This text distinguishes itself from others by the way the material is presented - in a progressive order from simple to more difficult, building each chapter upon foundations laid down in previous chapters. In this way, even the traditionally challenging aspects of fluid mechanics can be learned effectively. McGraw-Hill is also proud to offer ConnectPlus powered by Maple with the third edition of Cengel/Cimbabla, Fluid Mechanics. This innovative and powerful new system that helps your students learn more easily and gives you the ability to customize your homework problems and assign them simply and easily to your students. Problems are graded automatically, and the results are recorded immediately. Natural Math Notation allows for answer entry in many different forms, and the system allows for easy customization and authoring of exercises by the instructor.

Fluid Mechanics for Civil and Environmental Engineers


Author: Ahlam I. Shalaby
Publisher: CRC Press
ISBN: 1420019414
Category: Technology & Engineering
Page: 1684
View: 6460
DOWNLOAD NOW »
An ideal textbook for civil and environmental, mechanical, and chemical engineers taking the required Introduction to Fluid Mechanics course, Fluid Mechanics for Civil and Environmental Engineers offers clear guidance and builds a firm real-world foundation using practical examples and problem sets. Each chapter begins with a statement of objectives, and includes practical examples to relate the theory to real-world engineering design challenges. The author places special emphasis on topics that are included in the Fundamentals of Engineering exam, and make the book more accessible by highlighting keywords and important concepts, including Mathcad algorithms, and providing chapter summaries of important concepts and equations.

Exam Prep Flash Cards for Fluid Mechanics: Fundamentals and Applications


Author: Robert Powell
Publisher: Powell Publications
ISBN: N.A
Category: Education
Page: 800
View: 9797
DOWNLOAD NOW »
5,600 Flash Cards. Q & A FlashCards, Ebooks, Textbooks, Courses, Books Simplified as FlashCards by Powell Publications. Very effective study tools especially when you only have a limited amount of time. They work with your textbook or without a textbook and can help you to review and learn essential terms, people, places, events, and key concepts.

Fluid Mechanics


Author: Frank Mangrom White,Rhim Yoon Chul
Publisher: N.A
ISBN: 9789814720175
Category: Fluid mechanics
Page: 773
View: 2144
DOWNLOAD NOW »


Fluid Mechanics Fundamental and Applications, Cengel & Cimbala, 2006

Fluid Mechanics Fundamental and Applications
Author: The McGraw Hill Companies, Inc
Publisher: Bukupedia
ISBN: N.A
Category: Science
Page: 2036
View: 9666
DOWNLOAD NOW »
BACKGROUND Fluid mechanics is an exciting and fascinating subject with unlimited practical applications ranging from microscopic biological systems to automobiles, airplanes, and spacecraft propulsion. Yet fluid mechanics has historically been one of the most challenging subjects for undergraduate students. Unlike earlier freshman- and sophomore-level subjects such as physics, chemistry, and engineering mechanics, where students often learn equations and then “plug and chug” on their calculators, proper analysis of a problem in fluid mechanics requires much more. Oftentimes, students must first assess the problem, make and justify assumptions and/or approximations, apply the relevant physical laws in their proper forms, and solve the resulting equations before ever plugging any numbers into their calculators. Many problems in fluid mechanics require more than just knowledge of the subject, but also physical intuition and experience. Our hope is that this book, through its careful explanations of concepts and its use of numerous practical examples, sketches, figures, and photographs, bridges the gap between knowledge and proper application of that knowledge. Fluid mechanics is a mature subject; the basic equations and approximations are well established and can be found in numerous introductory fluid mechanics books. The books are distinguished from one another in the way the material is presented. An accessible fluid mechanics book should present the material in a progressive order from simple to more difficult, building each chapter upon foundations laid down in previous chapters. In this way, even the traditionally challenging aspects of fluid mechanics can be learned effectively. Fluid mechanics is by its very nature a highly visual subject, and students learn more readily by visual stimulation. It is therefore imperative that a good fluid mechanics book also provide quality figures, photographs, and visual aids that help to explain the significance and meaning of the mathematical expressions. O B J E C T I V E S This book is intended for use as a textbook in the first fluid mechanics course for undergraduate engineering students in their junior or senior year. Students are assumed to have an adequate background in calculus, physics, engineering mechanics, and thermodynamics. The objectives of this text are • To cover the basic principles and equations of fluid mechanics • To present numerous and diverse real-world engineering examples to give students a feel for how fluid mechanics is applied in engineering practice • To develop an intuitive understanding of fluid mechanics by emphasizing the physics, and by supplying attractive figures and visual aids to reinforce the physics The text contains sufficient material to give instructors flexibility as to which topics to emphasize. For example, aeronautics and aerospace engineering instructors may emphasize potential flow, drag and lift, compressible flow, turbomachinery, and CFD, while mechanical and civil engineering instructors may choose to emphasize pipe flows and open-channel flows, respectively. The book has been written with enough breadth of coverage that it can be used for a two-course sequence in fluid mechanics if desired. PHILOSOPHY AND GOAL We have adopted the same philosophy as that of the texts Thermodynamics: An Engineering Approach by Y. A. Çengel and M. A. Boles, Heat Transfer: A Practical Approach by Y. A. Çengel, and Fundamentals of Thermal-Fluid Sciences by Y. A. Çengel and R. H. Turner, all published by McGraw-Hill. Namely, our goal is to offer an engineering textbook that • Communicates directly to the minds of tomorrow’s engineers in a simple yet precise manner • Leads students toward a clear understanding and firm grasp of the basic principles of fluid mechanics • Encourages creative thinking and development of a deeper understanding and intuitive feel for fluid mechanics • Is read by students with interest and enthusiasm rather than merely as an aid to solve problems It is our philosophy that the best way to learn is by practice. Therefore, special effort is made throughout the book to reinforce material that was presented earlier (both earlier in the chapter and in previous chapters). For example, many of the illustrated example problems and end-of-chapter problems are comprehensive, forcing the student to review concepts learned in previous chapters. Throughout the book, we show examples generated by computational fluid dynamics (CFD), and we provide an introductory chapter on CFD. Our goal is not to teach details about numerical algorithms associated with CFD—this is more properly presented in a separate course, typically at the graduate level. Rather, it is our intent to introduce undergraduate students to the capabilities and limitations of CFD as an engineering tool.We use CFD solutions in much the same way as we use experimental results from a wind tunnel test, i.e., to reinforce understanding of the physics of fluid flows and to provide quality flow visualizations that help to explain fluid behavior. CONTENT AND ORGANIZAT I O N This book is organized into 15 chapters beginning with fundamental concepts of fluids and fluid flows and ending with an introduction to computational fluid dynamics, the application of which is rapidly becoming more commonplace, even at the undergraduate level. • Chapter 1 provides a basic introduction to fluids, classifications of fluid flow, control volume versus system formulations, dimensions, units, significant digits, and problem-solving techniques. • Chapter 2 is devoted to fluid properties such as density, vapor pressure, specific heats, viscosity, and surface tension. • Chapter 3 deals with fluid statics and pressure, including manometers and barometers, hydrostatic forces on submerged surfaces, buoyancy and stability, and fluids in rigid-body motion. • Chapter 4 covers topics related to fluid kinematics, such as the differences between Lagrangian and Eulerian descriptions of fluid flows, flow patterns, flow visualization, vorticity and rotationality, and the Reynolds transport theorem. • Chapter 5 introduces the fundamental conservation laws of mass, momentum, and energy, with emphasis on the proper use of the mass, Bernoulli, and energy equations and the engineering applications of these equations. • Chapter 6 applies the Reynolds transport theorem to linear momentum and angular momentum and emphasizes practical engineering applications of the finite control volume momentum analysis. • Chapter 7 reinforces the concept of dimensional homogeneity and introduces the Buckingham Pi theorem of dimensional analysis, dynamic similarity, and the method of repeating variables—material that is useful throughout the rest of the book and in many disciplines in science and engineering. • Chapter 8 is devoted to flow in pipes and ducts. We discuss the differences between laminar and turbulent flow, friction losses in pipes and ducts, and minor losses in piping networks. We also explain how to properly select a pump or fan to match a piping network. Finally, we discuss various experimental devices that are used to measure flow rate and velocity. • Chapter 9 deals with differential analysis of fluid flow and includes derivation and application of the continuity equation, the Cauchy equation, and the Navier–Stokes equation. We also introduce the stream function and describe its usefulness in analysis of fluid flows. • Chapter 10 discusses several approximations of the Navier–Stokes equations and provides example solutions for each approximation, including creeping flow, inviscid flow, irrotational (potential) flow, and boundary layers. • Chapter 11 covers forces on bodies (drag and lift), explaining the distinction between friction and pressure drag, and providing drag coefficients for many common geometries. This chapter emphasizes the practical application of wind tunnel measurements coupled with dynamic similarity and dimensional analysis concepts introduced earlier in Chapter 7. • Chapter 12 extends fluid flow analysis to compressible flow, where the behavior of gases is greatly affected by the Mach number, and the concepts of expansion waves, normal and oblique shock waves, and choked flow are introduced. • Chapter 13 deals with open-channel flow and some of the unique features associated with the flow of liquids with a free surface, such as surface waves and hydraulic jumps. • Chapter 14 examines turbomachinery in more detail, including pumps, fans, and turbines. An emphasis is placed on how pumps and turbines work, rather than on their detailed design. We also discuss overall pump and turbine design, based on dynamic similarity laws and simplified velocity vector analyses. • Chapter 15 describes the fundamental concepts of computational fluid dynamics (CFD) and shows students how to use commercial CFD codes as a tool to solve complex fluid mechanics problems. We emphasize the application of CFD rather than the algorithms used in CFD codes. Each chapter contains a large number of end-of-chapter homework problems suitable for use by instructors. Most of the problems that involve calculations are in SI units, but approximately 20 percent are written in English units. Finally, a comprehensive set of appendices is provided, giving the thermodynamic and fluid properties of several materials, not just air and water as in most introductory fluids texts. Many of the end-of-chapter problems require use of the properties found in these appendices. LEARNING TOOLS EMPHASIS ON PHYSICS A distinctive feature of this book is its emphasis on the physical aspects of the subject matter in addition to mathematical representations and manipulations. The authors believe that the emphasis in undergraduate education should remain on developing a sense of underlying physical mechanisms and a mastery of solving practical problems that an engineer is likely to face in the real world. Developing an intuitive understanding should also make the course a more motivating and worthwhile experience for the students. EFFECTIVE USE OF ASSOCIATION An observant mind should have no difficulty understanding engineering sciences. After all, the principles of engineering sciences are based on our everyday experiences and experimental observations. Therefore, a physical, intuitive approach is used throughout this text. Frequently, parallels are drawn between the subject matter and students’ everyday experiences so that they can relate the subject matter to what they already know. SELF-INSTRUCTING The material in the text is introduced at a level that an average student can follow comfortably. It speaks to students, not over students. In fact, it is selfinstructive. Noting that the principles of science are based on experimental observations, most of the derivations in this text are largely based on physical arguments, and thus they are easy to follow and understand. EXTENSIVE USE OF ARTWORK Figures are important learning tools that help the students “get the picture,” and the text makes effective use of graphics. It contains more figures and illustrations than any other book in this category. Figures attract attention and stimulate curiosity and interest. Most of the figures in this text are intended to serve as a means of emphasizing some key concepts that would otherwise go unnoticed; some serve as page summaries. CHAPTER OPENERS AND SUMMARIES Each chapter begins with an overview of the material to be covered. A summary is included at the end of each chapter, providing a quick review of basic concepts and important relations, and pointing out the relevance of the material. NUMEROUS WORKED-OUT EXAMPLES WITH A SYSTEMATIC SOLUTIONS PROCEDURE Each chapter contains several worked-out examples that clarify the material and illustrate the use of the basic principles. An intuitive and systematic approach is used in the solution of the example problems, while maintaining an informal conversational style. The problem is first stated, and the objectives are identified. The assumptions are then stated, together with their justifications. The properties needed to solve the problem are listed separately. Numerical values are used together with their units to emphasize that numbers without units are meaningless, and unit manipulations are as important as manipulating the numerical values with a calculator. The significance of the findings is discussed following the solutions. This approach is also used consistently in the solutions presented in the instructor’s solutions manual. A WEALTH OF REALISTIC END-OF-CHAPTER PROBLEMS The end-of-chapter problems are grouped under specific topics to make problem selection easier for both instructors and students. Within each group of problems are Concept Questions, indicated by “C,” to check the students’ level of understanding of basic concepts. The problems under Review Problems are more comprehensive in nature and are not directly tied to any specific section of a chapter – in some cases they require review of material learned in previous chapters. Problems designated as Design and Essay are intended to encourage students to make engineering judgments, to conduct independent exploration of topics of interest, and to communicate their findings in a professional manner. Problems designated by an “E” are in English units, and SI users can ignore them. Problems with the are solved using EES, and complete solutions together with parametric studies are included on the enclosed DVD. Problems with the are comprehensive in nature and are intended to be solved with a computer, preferably using the EES software that accompanies this text. Several economics- and safety-related problems are incorporated throughout to enhance cost and safety awareness among engineering students. Answers to selected problems are listed immediately following the problem for convenience to students. USE OF COMMON NOTATION The use of different notation for the same quantities in different engineering courses has long been a source of discontent and confusion. A student taking both fluid mechanics and heat transfer, for example, has to use the notation Q for volume flow rate in one course, and for heat transfer in the other. The need to unify notation in engineering education has often been raised, even in some reports of conferences sponsored by the National Science Foundation through Foundation Coalitions, but little effort has been made to date in this regard. For example, refer to the final report of the “Mini-Conference on Energy Stem Innovations, May 28 and 29, 2003, University of Wisconsin.” In this text we made a conscious effort to minimize this conflict by adopting the familiar thermodynamic notation V . for volume flow rate, thus reserving the notation Q for heat transfer. Also, we consistently use an overdot to denote time rate. We think that both students and instructors will appreciate this effort to promote a common notation. A CHOICE OF SI ALONE OR SI/ENGLISH UNITS In recognition of the fact that English units are still widely used in some industries, both SI and English units are used in this text, with an emphasis on SI. The material in this text can be covered using combined SI/English units or SI units alone, depending on the preference of the instructor. The property tables and charts in the appendices are presented in both units, except the ones that involve dimensionless quantities. Problems, tables, and charts in English units are designated by “E” after the number for easy recognition, and they can be ignored easily by the SI users. COMBINED COVERAGE OF BERNOULLI AND ENERGY EQUATIONS The Bernoulli equation is one of the most frequently used equations in fluid mechanics, but it is also one of the most misused. Therefore, it is important to emphasize the limitations on the use of this idealized equation and to show how to properly account for imperfections and irreversible losses. In Chapter 5, we do this by introducing the energy equation right after the Bernoulli equation and demonstrating how the solutions of many practical engineering problems differ from those obtained using the Bernoulli equation. This helps students develop a realistic view of the Bernoulli equation. A SEPARATE CHAPTER ON CFD Commercial Computational Fluid Dynamics (CFD) codes are widely used in engineering practice in the design and analysis of flow systems, and it has become exceedingly important for engineers to have a solid understanding of the fundamental aspects, capabilities, and limitations of CFD. Recognizing that most undergraduate engineering curriculums do not have room for a full course on CFD, a separate chapter is included here to make up for this deficiency and to equip students with an adequate background on the strengths and weaknesses of CFD. APPLICATION SPOTLIGHTS Throughout the book are highlighted examples called Application Spotlights where a real-world application of fluid mechanics is shown. A unique feature of these special examples is that they are written by guest authors. The Application Spotlights are designed to show students how fluid mechanics has diverse applications in a wide variety of fields. They also include eye-catching photographs from the guest authors’ research. GLOSSARY OF FLUID MECHANICS TERMS Throughout the chapters, when an important key term or concept is introduced and defined, it appears in black boldface type. Fundamental fluid mechanics terms and concepts appear in blue boldface type, and these fundamental terms also appear in a comprehensive end-of-book glossary developed by Professor James Brasseur of The Pennsylvania State University. This unique glossary is an excellent learning and review tool for students as they move forward in their study of fluid mechanics. In addition, students can test their knowledge of these fundamental terms by using the interactive flash cards and other resources located on our accompanying website (www.mhhe.com/cengel). CONVERSION FACTORS Frequently used conversion factors, physical constants, and frequently used properties of air and water at 20°C and atmospheric pressure are listed on the front inner cover pages of the text for easy reference. NOMENCLATURE A list of the major symbols, subscripts, and superscripts used in the text are listed on the inside back cover pages of the text for easy reference. SUPPLEMENTS These supplements are available to adopters of the book: STUDENT RESOURCES DVD Packaged free with every new copy of the text, this DVD provides a wealth of resources for students including Fluid Mechanics Videos, a CFD Animations Library, and EES Software. ONLINE LEARNING CENTER Web support is provided for the book on our Online Learning Center at www.mhhe.com/cengel. Visit this robust site for book and supplement information, errata, author information, and further resources for instructors and students. ENGINEERING EQUATION SOLVER (EES) Developed by Sanford Klein and William Beckman from the University of Wisconsin–Madison, this software combines equation-solving capability and engineering property data. EES can do optimization, parametric analysis, and linear and nonlinear regression, and provides publication-quality plotting capabilities. Thermodynamics and transport properties for air, water, and many other fluids are built-in and EES allows the user to enter property data or functional relationships. FLUENT FLOWLAB® SOFTWARE AND TEMPLATES As an integral part of Chapter 15, “Introduction to Computational Fluid Dynamics,” we provide access to a student-friendly CFD software package developed by Fluent Inc. In addition, we provide over 40 FLUENT FLOWLAB templates to complement the end-of-chapter problems in Chapter 15. These problems and templates are unique in that they are designed with both a fluid mechanics learning objective and a CFD learning objective in mind. INSTRUCTOR’S RESOURCE CD-ROM (AVAILABLE TO INSTRUCTORS ONLY) This CD, available to instructors only, offers a wide range of classroom preparation and presentation resources including an electronic solutions manual with PDF files by chapter, all text chapters and appendices as downloadable PDF files, and all text figures in JPEG format. COSMOS CD-ROM (AVAILABLE TO INSTRUCTORS ONLY) This CD, available to instructors only, provides electronic solutions delivered via our database management tool. McGraw-Hill’s COSMOS allows instructors to streamline the creation of assignments, quizzes, and tests by using problems and solutions from the textbook—as well as their own custom material. ACKNOWLEDGMENTS The authors would like to acknowledge with appreciation the numerous and valuable comments, suggestions, constructive criticisms, and praise from the following evaluators and reviewers: xxii FLUID MECHANICS Mohammad Ali Kettering University Darryl Alofs University of Missouri, Rolla Farrukh Alvi Florida A & M University & Florida State University Ryoichi Amano University of Wisconsin–Milwaukee Michael Amitay Rensselaer Polytechnic Institute T. P. Ashokbabu National Institute of Technology, India Idirb Azouz Southern Utah University Kenneth S. Ball University of Texas at Austin James G. Brasseur The Pennsylvania State University Glenn Brown Oklahoma State University John Callister Cornell University Frederick Carranti Syracuse University Kevin W. Cassel Illinois Institute of Technology Haris Catrakis University of California, Irvine Louis N. Cattafesta III University of Florida Soyoung Cha University of Illinois at Chicago Tiao Chang Ohio University Young Cho Drexel University Po-Ya (Abel) Chuang The Pennsylvania State University William H. Colwill American Hydro Corporation A. Terrence Conlisk Jr. The Ohio State University Daniel Cox Texas A&M University John Crepeau University of Idaho Jie Cui Tennessee Technological University Lisa Davids Embry-Riddle Aeronautical University Jerry Drummond The University of Akron Dwayne Edwards University of Kentucky Richard Figliola Clemson University Charles Forsberg Hofstra University Fred K. Forster University of Washington

Exam Prep Flash Cards for Loose Leaf for Fluid Mechanics: Fundamentals and Applications


Author: Robert Powell
Publisher: Powell Publications
ISBN: N.A
Category: Education
Page: 800
View: 6243
DOWNLOAD NOW »
5,600 Flash Cards. Q & A FlashCards, Ebooks, Textbooks, Courses, Books Simplified as FlashCards by Powell Publications. Very effective study tools especially when you only have a limited amount of time. They work with your textbook or without a textbook and can help you to review and learn essential terms, people, places, events, and key concepts.

Grenzschicht-Theorie


Author: H. Schlichting,Klaus Gersten
Publisher: Springer-Verlag
ISBN: 3662075547
Category: Technology & Engineering
Page: 852
View: 1088
DOWNLOAD NOW »
Die Überarbeitung für die 10. deutschsprachige Auflage von Hermann Schlichtings Standardwerk wurde wiederum von Klaus Gersten geleitet, der schon die umfassende Neuformulierung der 9. Auflage vorgenommen hatte. Es wurden durchgängig Aktualisierungen vorgenommen, aber auch das Kapitel 15 von Herbert Oertel jr. neu bearbeitet. Das Buch gibt einen umfassenden Überblick über den Einsatz der Grenzschicht-Theorie in allen Bereichen der Strömungsmechanik. Dabei liegt der Schwerpunkt bei den Umströmungen von Körpern (z.B. Flugzeugaerodynamik). Das Buch wird wieder den Studenten der Strömungsmechanik wie auch Industrie-Ingenieuren ein unverzichtbarer Partner unerschöpflicher Informationen sein.

Finite Elemente Analyse für Ingenieure

Grundlagen und praktische Anwendungen mit Z88Aurora
Author: Frank Rieg,Reinhard Hackenschmidt,Bettina Alber-Laukant
Publisher: Carl Hanser Verlag GmbH Co KG
ISBN: 3446443185
Category: Technology & Engineering
Page: 735
View: 331
DOWNLOAD NOW »
Inhaltsbeschreibung folgt

Numerische Strömungsmechanik


Author: Joel H. Ferziger,Milovan Peric
Publisher: Springer-Verlag
ISBN: 3540682287
Category: Science
Page: 509
View: 7358
DOWNLOAD NOW »
Das Buch bietet einen Überblick über die numerischen Methoden zur Lösung strömungsmechanischer Probleme. Die in der Praxis meistgenutzten Methoden werden detailliert beschrieben. Behandelt werden auch fortgeschrittene Methoden, wie die Simulation von Turbulenzen und Parallel-Verarbeitung. Das Buch beschreibt die Grundlagen und Prinzipien der verschiedenen Methoden. Numerische Genauigkeit und Abschätzung sowie Fehlerreduktion werden detailliert mit vielen Beispielen behandelt. Alle Computercodes sind über den Server ftp.springer.de des Springer-Verlages erhältlich (Internet).

Fundamentals Of Mechanical Sciences: Engineering Thermodynamics And Fluid Mechanics (For Wbut)


Author: Mukherjee,Paul Akshoy Ranjan,mukherjee Sanchayan
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120337565
Category:
Page: N.A
View: 5616
DOWNLOAD NOW »


Fundamentals and Applications of Renewable Energy


Author: Yunus A. Cengel, Dr.,Mehmet Kanoglu
Publisher: McGraw-Hill Education
ISBN: 9781260455304
Category: Technology & Engineering
Page: 512
View: 9553
DOWNLOAD NOW »
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Master the principles and applications of today’s renewable energy sources and systems Written by a team of recognized experts and educators, this authoritative textbook offers comprehensive coverage of all major renewable energy sources. The book delves into the main renewable energy topics such as solar, wind, geothermal, hydropower, biomass, tidal, and wave, as well as hydrogen and fuel cells. By stressing real-world relevancy and practical applications, Fundamentals and Applications of Renewable Energy helps prepare students for a successful career in renewable energy. The text contains detailed discussions on the thermodynamics, heat transfer, and fluid mechanics aspects of renewable energy systems in addition to technical and economic analyses. Numerous worked-out example problems and over 850 end-of-chapter review questions reinforce main concepts, formulations, design, and analysis. Coverage includes:•Renewable energy basics•Thermal sciences overview•Fundamentals and applications ofSolar energy Wind energyHydropowerGeothermal energy Biomass energy Ocean energyHydrogen and fuel cells•Economics of renewable energy•Energy and the environment

Fundamentals of Fluid Mechanics


Author: Joseph A. Schetz,Allen E. Fuhs
Publisher: John Wiley & Sons
ISBN: 9780471348566
Category: Technology & Engineering
Page: 935
View: 3000
DOWNLOAD NOW »
Fundamentals of Fluid Mechanics is a vital repository of essential information on this crucial subject. It brings together the contributions of recognized experts from around the world to cover all of the concepts of classical fluid mechanics - from the basic properties of liquids through thermodynamics, flow theory, and gas dynamics. With answers for the practicing engineer and real-world insights for the student, it includes applications from the mechanical, civil, aerospace, chemical, and other fields.

Foundations and Applications of Engineering Mechanics


Author: H. D. Ram,A. K. Chauhan
Publisher: Cambridge University Press
ISBN: 1316675432
Category: Science
Page: N.A
View: 8559
DOWNLOAD NOW »
Engineering mechanics is the branch of engineering that applies the laws of mechanics in design, and is at the core of every machine that is designed. This book offers a comprehensive discussion of the fundamental theories and principles of engineering mechanics. It begins by explaining the laws and idealization of mechanics, and then establishes the equation of equilibrium for a rigid body and free body diagram (FBD), along with their applications. Chapters on method of virtual work and mechanical vibration discuss in detail important topics such as principle of virtual work, potential energy and equilibrium and free vibration. The book also introduces the elastic spring method for finding deflection in beams and uses a simple integration method to calculate centroid and moment of inertia. This volume will serve as a useful textbook for undergraduates and engineering students studying engineering mechanics.

Advances in Fluid Modeling & Turbulence Measurements

Proceedings of the 8th International Symposium on Flow Modeling and Turbulence Measurements : Tokyo, Japan, 4-6 December 2001
Author: Akira Wada
Publisher: World Scientific
ISBN: 9789812777591
Category: Technology & Engineering
Page: 888
View: 7480
DOWNLOAD NOW »
This book is an essential reference for engineers and scientists working in the field of turbulence. It covers a variety of applications, such as: turbulence measurements; mathematical and numerical modeling of turbulence; thermal hydraulics; applications for civil, mechanical and nuclear engineering; environmental fluid mechanics; river and open channel flows; coastal problems; ground water.

Synthetic Jets

Fundamentals and Applications
Author: Kamran Mohseni,Rajat Mittal
Publisher: CRC Press
ISBN: 1439868115
Category: Science
Page: 382
View: 3692
DOWNLOAD NOW »
Compiles Information from a Multitude of Sources Synthetic jets have been used in numerous applications, and are part of an emergent field. Accumulating information from hundreds of journal articles and conference papers, Synthetic Jets: Fundamentals and Applications brings together in one book the fundamentals and applications of fluidic actuators. Clearly and thoroughly explaining the mechanisms of underlying synthetic jet behavior—from aerospace to mechanical engineering—this book addresses a variety of aspects, and provides a holistic, systematic approach of the subject. Covers Fundamental Principles, Analysis Techniques, and Applications Designed as a starting point for newcomers, the book is divided into three parts: fundamentals, techniques, and applications, and focuses on a class of incompressible jet flows where the jet is made up of the surrounding fluid. It explores fluid dynamics, hydrodynamic modeling, acoustics, and fabrication. It covers key measurement techniques, computational modeling, and synthetic jet design. In addition to highlighting the concepts and applications of synthetic jets, (in particular their uses in flow control and thermal management in electronic devices), the book explores attempts to improve and accelerate the design and optimization processes (from flow control to electronic cooling and propulsion) involved in a wealth of applied knowledge. Features prominent experts in the field Surveys the state of the art Details a pathway to future advances in the industry Synthetic Jets: Fundamentals and Applications can be used as a guidebook for researchers, graduate students, and upper-level undergraduate students.