Introduction to Composite Materials Design, Third Edition


Author: Ever J. Barbero
Publisher: CRC Press
ISBN: 1315296470
Category: Technology & Engineering
Page: 534
View: 4044
DOWNLOAD NOW »
The Third Edition of Introduction to Composite Materials Design is a practical, design-oriented textbook aimed at students and practicing engineers learning analysis and design of composite materials and structures. Readers will find the Third Edition to be both highly streamlined for teaching, with new comprehensive examples and exercises emphasizing design, as well as complete with practical content relevant to current industry needs. Furthermore, the Third Edition is updated with the latest analysis techniques for the preliminary design of composite materials, including universal carpet plots, temperature dependent properties, and more. Significant additions provide the essential tools for mastering Design for Reliability as well as an expanded material property database.

Introduction to Composite Materials Design, Second Edition


Author: Ever J. Barbero
Publisher: CRC Press
ISBN: 1420079158
Category: Technology & Engineering
Page: 562
View: 7324
DOWNLOAD NOW »
Presenting a wealth of completely revised examples and new information, Introduction to Composite Materials Design, Second Edition greatly improves on the bestselling first edition. It incorporates state-of-the-art advances in knowledge and design methods that have taken place over the last 10 years, yet maintains the distinguishing features and vital content of the original. New material in this second edition: Introduces new background topics, including design for reliability and fracture mechanics Revises and updates information on polymer matrices, modern fibers (e.g., carbon nanotubes, Basalt, Vectran) and fiber forms such as textiles/fabrics Includes new information on Vacuum Assisted Resin Transfer Molding (VARTM) Incorporates major advances in prediction of unidirectional-lamina properties Reworks sections on material failure, including the most advanced prediction and design methodologies, such as in situ strength and Mohr-Coulomb criterion, etc. Covers all aspects of preliminary design, relegating finite element analysis to a separate textbook Discusses methodology used to perform damage mechanics analysis of laminated composites accounting for the main damage modes: longitudinal tension, longitudinal compression, transverse tension, in-plane shear, and transverse compression Presents in-depth analysis of composites reinforced with plain, twill, and satin weaves, as well as with random fiber reinforcements Expands the analysis of thin walled beams with newly developed examples and MATLAB® code Addresses external strengthening of reinforced-concrete beams, columns, and structural members subjected to both axial and bending loads The author distributes 78 fully developed examples throughout the book to illustrate the application of presented analysis techniques and design methodology, making this textbook ideally suited for self-study. Requiring no more than senior undergraduate-level understanding of math and mechanics, it remains an invaluable tool for students in the engineering disciplines, as well as for self-studying, practicing engineers.

Introduction to Composite Materials Design, Second Edition


Author: Ever J. Barbero
Publisher: CRC Press
ISBN: 1439894132
Category: Technology & Engineering
Page: 562
View: 5023
DOWNLOAD NOW »
Presenting a wealth of completely revised examples and new information, Introduction to Composite Materials Design, Second Edition greatly improves on the bestselling first edition. It incorporates state-of-the-art advances in knowledge and design methods that have taken place over the last 10 years, yet maintains the distinguishing features and vital content of the original. New material in this second edition: Introduces new background topics, including design for reliability and fracture mechanics Revises and updates information on polymer matrices, modern fibers (e.g., carbon nanotubes, Basalt, Vectran) and fiber forms such as textiles/fabrics Includes new information on Vacuum Assisted Resin Transfer Molding (VARTM) Incorporates major advances in prediction of unidirectional-lamina properties Reworks sections on material failure, including the most advanced prediction and design methodologies, such as in situ strength and Mohr-Coulomb criterion, etc. Covers all aspects of preliminary design, relegating finite element analysis to a separate textbook Discusses methodology used to perform damage mechanics analysis of laminated composites accounting for the main damage modes: longitudinal tension, longitudinal compression, transverse tension, in-plane shear, and transverse compression Presents in-depth analysis of composites reinforced with plain, twill, and satin weaves, as well as with random fiber reinforcements Expands the analysis of thin walled beams with newly developed examples and MATLAB® code Addresses external strengthening of reinforced-concrete beams, columns, and structural members subjected to both axial and bending loads The author distributes 78 fully developed examples throughout the book to illustrate the application of presented analysis techniques and design methodology, making this textbook ideally suited for self-study. Requiring no more than senior undergraduate-level understanding of math and mechanics, it remains an invaluable tool for students in the engineering disciplines, as well as for self-studying, practicing engineers.

Composite Materials

Design and Applications, Third Edition
Author: Daniel Gay
Publisher: CRC Press
ISBN: 1466584874
Category: Technology & Engineering
Page: 635
View: 7639
DOWNLOAD NOW »
Considered to have contributed greatly to the pre-sizing of composite structures, Composite Materials: Design and Applications is a popular reference book for designers of heavily loaded composite parts. Fully updated to mirror the exponential growth and development of composites, this English-language Third Edition: Contains all-new coverage of nanocomposites and biocomposites Reflects the latest manufacturing processes and applications in the aerospace, automotive, naval, wind turbine, and sporting goods industries Provides a design method to define composite multilayered plates under loading, along with all numerical information needed for implementation Proposes original study of composite beams of any section shapes and thick-laminated composite plates, leading to technical formulations that are not found in the literature Features numerous examples of the pre-sizing of composite parts, processed from industrial cases and reworked to highlight key information Includes test cases for the validation of computer software using finite elements Consisting of three main parts, plus a fourth on applications, Composite Materials: Design and Applications, Third Edition features a technical level that rises in difficulty as the text progresses, yet each part still can be explored independently. While the heart of the book, devoted to the methodical pre-design of structural parts, retains its original character, the contents have been significantly rewritten, restructured, and expanded to better illustrate the types of challenges encountered in modern engineering practice.

Introduction to Composite Materials Design


Author: Ever J. Barbero
Publisher: CRC Press
ISBN: 1315296489
Category: Technology & Engineering
Page: 534
View: 2665
DOWNLOAD NOW »
The Third Edition of Introduction to Composite Materials Design is a practical, design-oriented textbook aimed at students and practicing engineers learning analysis and design of composite materials and structures. Readers will find the Third Edition to be both highly streamlined for teaching, with new comprehensive examples and exercises emphasizing design, as well as complete with practical content relevant to current industry needs. Furthermore, the Third Edition is updated with the latest analysis techniques for the preliminary design of composite materials, including universal carpet plots, temperature dependent properties, and more. Significant additions provide the essential tools for mastering Design for Reliability as well as an expanded material property database.

Composite Materials

Science and Engineering
Author: Krishan K. Chawla
Publisher: Springer Science & Business Media
ISBN: 1475729669
Category: Technology & Engineering
Page: 483
View: 3351
DOWNLOAD NOW »
Focusing on the relationship between structure and properties, this is a well-balanced treatment of the mechanics and the materials science of composites, while not neglecting the importance of processing. This updated second edition contains new chapters on fatigue and creep of composites, and describes in detail how the various reinforcements, the materials in which they are embedded, and of the interfaces between them, control the properties of the composite materials at both the micro- and macro-levels. Extensive use is made of micrographs and line drawings, and examples of practical applications in various fields are given throughout the book, together with extensive references to the literature. Intended for use in graduate and upper-division undergraduate courses, this book will also prove a useful reference for practising engineers and researchers in industry and academia.

Fiber-Reinforced Composites

Materials, Manufacturing, and Design, Third Edition
Author: P.K. Mallick
Publisher: CRC Press
ISBN: 1420005987
Category: Technology & Engineering
Page: 638
View: 4280
DOWNLOAD NOW »
The newly expanded and revised edition of Fiber-Reinforced Composites: Materials, Manufacturing, and Design presents the most up-to-date resource available on state-of-the-art composite materials. This book is unique in that it not only offers a current analysis of mechanics and properties, but also examines the latest advances in test methods, applications, manufacturing processes, and design aspects involving composites. This third edition presents thorough coverage of newly developed materials including nanocomposites. It also adds more emphasis on underlying theories, practical methods, and problem-solving skills employed in real-world applications of composite materials. Each chapter contains new examples drawn from diverse applications and additional problems to reinforce the practical relevance of key concepts. New in The Third Edition: Contains new sections on material substitution, cost analysis, nano- and natural fibers, fiber architecture, and carbon-carbon composites Provides a new chapter on polymer-based nanocomposites Adds new sections on test methods such as fiber bundle tests and interlaminar fracture measurements Expands sections on manufacturing fundamentals, thermoplastics matrix composites, and resin transfer molding Maintaining the trademark quality of its well-respected and authoritative predecessors, Fiber-Reinforced Composites: Materials, Manufacturing, and Design, Third Edition continues to provide a unique interdisciplinary perspective and a logical approach to understanding the latest developments in the field.

Mechanics of Composite Materials


Author: Autar K. Kaw
Publisher: CRC Press
ISBN: 9780849396564
Category: Science
Page: 352
View: 382
DOWNLOAD NOW »
Today's composite materials often outshine traditional materials; they are lightweight, corrosion-resistant, and strong. Used in everything from aircraft structures to golf clubs, and serving industries from medicine to space exploration, composites are an exciting field of study for students, engineers, and researchers around the world. New applications of these versatile materials are being found daily. This innovative book provides a complete introduction to the mechanical behavior of composites. Geared to upper-level and graduate students, or practicing engineers and scientists interested in updating their knowledge, Mechanics of Composite Materials is a new approach to the topic. Unlike old-style texts, this book introduces the basics of composites through frequently asked questions the author answers from his considerable experience as a professor and researcher in the field. The text is supplemented by user-friendly PROMAL software, which allows readers to conduct studies, compare theories, design structures, and quickly access the information in tables and graphs. Richly illustrated and filled with problems, reviews, and examples, this is an excellent assessment of an exciting field.

Fundamentals of Composites Manufacturing, Second Edition

Materials, Methods and Applications
Author: A. Brent Strong
Publisher: Society of Manufacturing Engineers
ISBN: 0872638545
Category: Technology & Engineering
Page: 620
View: 8782
DOWNLOAD NOW »
Describes advances, key information, case studies, and examples that can broaden your knowledge of composites materials and manufacturing methods. This text deals with composites manufacturing methods, providing tips for getting the best results that weigh the required material properties against cost and production efficiency. An Instructor's Guide is also available.

Composite Materials for Aircraft Structures


Author: Baker, Alan A. Baker
Publisher: AIAA
ISBN: 9781600860409
Category: Airplanes
Page: 599
View: 4400
DOWNLOAD NOW »


Mechanics Of Composite Materials


Author: Robert M. Jones
Publisher: CRC Press
ISBN: 9781560327127
Category: Technology & Engineering
Page: 538
View: 7507
DOWNLOAD NOW »
This book balances introduction to the basic concepts of the mechanical behavior of composite materials and laminated composite structures. It covers topics from micromechanics and macromechanics to lamination theory and plate bending, buckling, and vibration, clarifying the physical significance of composite materials. In addition to the materials covered in the first edition, this book includes more theory-experiment comparisons and updated information on the design of composite materials.

Introduction to Dislocations


Author: Derek Hull,D. J. Bacon
Publisher: Elsevier
ISBN: 9780080966731
Category: Technology & Engineering
Page: 272
View: 4154
DOWNLOAD NOW »
In materials science, dislocations are irregularities within the crystal structure or atomic scale of engineering materials, such as metals, semi-conductors, polymers, and composites. Discussing this specific aspect of materials science and engineering, Introduction to Dislocations is a key resource for students. The book provides students and practitioners with the fundamental principles required to understand dislocations. Comprised of 10 chapters, the text includes advanced computer modeling and very high-resolution electron microscopy to help readers better understand the structure of atoms close to the core of dislocations. It shows that atomic arrangement has a significant effect on the formation of dislocations and thereby on the properties of solids. The first two chapters of the book present an overview of dislocations. The crystal structures and the various defects and dislocations are discussed, and methods of observation and diagnosis of dislocations are covered. Chapters 3 to 5 discuss the behavior of dislocations and explain how changes in the structure and arrangement of atoms can affect the behavior of dislocations. The three chapters also discuss the mechanical properties of dislocations. The remaining chapters offer a detailed discussion of the mechanisms of dislocations and the mechanical strength of crystalline solids. The book is written for undergraduate- and graduate-level students in both materials science and mechanical engineering. Non-experts and novices working on mechanical properties, mechanisms of deformation and fracture, and properties of materials, as well as industrial and academic researchers, will find this book invaluable. Long-established academic reference by an expert author team, highly regarded for their contributions to the field. Uses minimal mathematics to present theory and applications in a detailed yet easy-to-read manner, making this an understandable introduction to a complex topic. Unlike the main competition, this new edition includes recent developments in the subject and up-to-date references to further reading and research sources.

Design and Analysis of Composite Structures

With Applications to Aerospace Structures
Author: Christos Kassapoglou
Publisher: John Wiley & Sons
ISBN: 1118536940
Category: Technology & Engineering
Page: 416
View: 978
DOWNLOAD NOW »
New edition updated with additional exercises and two new chapters. Design and Analysis of Composite Structures: With Applications to Aerospace Structures, 2nd Edition builds on the first edition and includes two new chapters on composite fittings and the design of a composite panel, as well additional exercises. The book enables graduate students and engineers to generate meaningful and robust designs of complex composite structures. A compilation of analysis and design methods for structural components made of advanced composites, it begins with simple parts such as skins and stiffeners and progresses through to applications such as entire components of fuselages and wings. It provides a link between theory and day-to-day design practice, using theory to derive solutions that are applicable to specific structures and structural details used in industry. Starting with the basic mathematical derivation followed by simplifications used in real-world design,Design and Analysis of Composite Structures: With Applications to Aerospace Structures, 2nd Edition presents the level of accuracy and range of applicability of each method along with design guidelines derived from experience combined with analysis. The author solves in detail examples taken from actual applications to show how the concepts can be applied, solving the same design problem with different methods based on different drivers (e.g. cost or weight) to show how the final configuration changes as the requirements and approach change. Each chapter is followed by exercises that represent specific design problems often encountered in the aerospace industry but which are also applicable in the in the automotive, marine, and construction industries. Updated to include additional exercises, that represent real design problems encountered in the aerospace industry, but which are also applicable in the in the automotive, marine, and construction industries. Includes two new chapters. One on composite fittings and another on application and the design of a composite panel. Provides a toolkit of analysis and design methods that enable engineers and graduate students to generate meaningful and robust designs of complex composite structures. Provides solutions that can be used in optimization schemes without having to run finite element models at each iteration; thus speeding up the design process and allowing the examination of many more alternatives than traditional approaches. Supported by a complete set of lecture slides and solutions to the exercises hosted on a companion website for instructors. An invaluable resource for Engineers and graduate students in aerospace engineering as well as Graduate students and engineers in mechanical, civil and marine engineering.

Finite Element Analysis of Composite Materials


Author: Ever J. Barbero
Publisher: CRC Press
ISBN: 1420054341
Category: Technology & Engineering
Page: 360
View: 4291
DOWNLOAD NOW »
Designing structures using composite materials poses unique challenges due especially to the need for concurrent design of both material and structure. Students are faced with two options: textbooks that teach the theory of advanced mechanics of composites, but lack computational examples of advanced analysis; and books on finite element analysis that may or may not demonstrate very limited applications to composites. But now there is third option that makes the other two obsolete: Ever J. Barbero's Finite Element Analysis of Composite Materials. By layering detailed theoretical and conceptual discussions with fully developed examples, this text supplies the missing link between theory and implementation. In-depth discussions cover all of the major aspects of advanced analysis, including three-dimensional effects, viscoelasticity, edge effects, elastic instability, damage, and delamination. More than 50 complete examples using mainly ANSYSTM, but also including some use of MATLAB®, demonstrate how to use the concepts to formulate and execute finite element analyses and how to interpret the results in engineering terms. Additionally, the source code for each example is available for download online. Cementing applied computational and analytical experience to a firm foundation of basic concepts and theory, Finite Element Analysis of Composite Materials offers a modern, practical, and versatile classroom tool for today's engineering classroom.

Mechanics of Composite Materials


Author: Richard M. Christensen
Publisher: Courier Corporation
ISBN: 0486136663
Category: Science
Page: 384
View: 5292
DOWNLOAD NOW »
Graduate-level text assembles and interprets contributions to field of composite materials for a comprehensive account of mechanical behavior of heterogeneous media. Subjects include macroscopic stiffness properties and failure characterization. 1979 edition.

Finite Element Analysis of Composite Materials Using ANSYS®, Second Edition


Author: Ever J. Barbero
Publisher: CRC Press
ISBN: 1466516909
Category: Mathematics
Page: 366
View: 4456
DOWNLOAD NOW »
Designing structures using composite materials poses unique challenges, especially due to the need for concurrent design of both material and structure. Students are faced with two options: textbooks that teach the theory of advanced mechanics of composites, but lack computational examples of advanced analysis, and books on finite element analysis that may or may not demonstrate very limited applications to composites. But there is a third option that makes the other two obsolete: Ever J. Barbero's Finite Element Analysis of Composite Materials Using ANSYS®, Second Edition. The Only Finite Element Analysis Book on the Market Using ANSYS to Analyze Composite Materials. By layering detailed theoretical and conceptual discussions with fully developed examples, this text supplies the missing link between theory and implementation. In-depth discussions cover all of the major aspects of advanced analysis, including three-dimensional effects, viscoelasticity, edge effects, elastic instability, damage, and delamination. This second edition of the bestseller has been completely revised to incorporate advances in the state of the art in such areas as modeling of damage in composites. In addition, all 50+ worked examples have been updated to reflect the newest version of ANSYS. Including some use of MATLAB®, these examples demonstrate how to use the concepts to formulate and execute finite element analyses and how to interpret the results in engineering terms. Additionally, the source code for each example is available to students for download online via a companion website featuring a special area reserved for instructors. Plus a solutions manual is available for qualifying course adoptions. Cementing applied computational and analytical experience to a firm foundation of basic concepts and theory, Finite Element Analysis of Composite Materials Using ANSYS, Second Edition offers a modern, practical, and versatile classroom tool for today's engineering classroom.

Introduction to Composite Materials


Author: StephenW. Tsai
Publisher: Routledge
ISBN: 1351437119
Category: Technology & Engineering
Page: 466
View: 9593
DOWNLOAD NOW »
A widely used basic text by two recognized authorities. A unified and disciplined approach; advanced concepts reduced to easy-to-use charts, formulas and numerical examples.

Biomedical Composites


Author: Luigi Ambrosio
Publisher: Elsevier
ISBN: 1845697375
Category: Technology & Engineering
Page: 648
View: 5965
DOWNLOAD NOW »
Biocomposites are widely used in the medical industry to repair and restore bone, tooth, cartilage skin and other tissues. Biomedical composites, provides a thorough review of the current status, recent progress and future trends in composites for biomedical applications. Part one discusses the fundamentals of biocomposites with chapters on natural composites, design and fabrication of biocomposites, and hard and soft tissue applications of biocomposites. Part two then reviews applications of biocomposites. Chapters discuss composites for bone repair, composite coatings for implants, composites for spinal implants, injectable composites and composites for tissue engineered scaffolds. Chapters in part three discuss the biocompatibility, mechanical behaviour and failure of biocomposites with such topics as cellular response, testing of biocomposites and tribology of biocomposites. Finally part four reviews the future for biocomposites with chapters on nano-structured biocomposites, developing biocomposites as scaffolds and biocomposites in tissue engineering and regenerative medicine. With its distinguished editor and team of international contributors, Biomedical composites is an essential reference to materials scientists and researchers in industry and academia, as well as all those concerned with this increasingly important field. Provides a thorough review of the current status, recent progress and future trends in composites for biomedical applications Discusses the fundamentals of biocomposites with chapters on natural composites, design and fabrication of biocomposites and their applications Chapters address composites for bone repair, spinal implants and various other applications and discuss biocompatability, mechanical behaviour and failure of biocomposites

Multifunctional Composites


Author: Ever J. Barbero
Publisher: Createspace Independent Publishing Platform
ISBN: 9781516804528
Category: Composite materials
Page: 450
View: 4045
DOWNLOAD NOW »
Multifunctional composites include all composites which provide more than one property, or functionality, whether specifically designed or modified from existing designs. Although traditional polymer matrix composites have many useful properties including stiffness, strength, and durability, these often involve tradeoffs such as poor acoustic damping and low electrical conductivity. By designing multifunctional composites, new and enhanced functionalities can complement the typical high-stiffness and high-strength densities of composites. Furthermore, multifunctional composites can feature entirely original functionalities, such as self-healing and microvascular transport, which do not exist in classical composites. Among the shortcomings of traditional composites are lower conductivity and higher contact resistance than aluminum. This complicates efforts to provide aircraft with shielding, grounding, and protection from lighting strikes. Laminated composites are also susceptible to damage when subjected to low velocity impact, resulting in reduced compression-after-impact (CAI) strength. In applications such as aircraft, rotorcraft, windmills, and missiles, erosion by rain and sand roughens surfaces of classical composites, reducing aerodynamic performance and optical and radiation transmission. In addition, traditional composites' high stiffness-to-weight ratio facilitates the propagation of acoustic and mechanical vibration, leading to passenger discomfort and even mechanical damage. Innovative materials that can mitigate these shortcomings are thoroughly described in this book-from design to application. Learn how self-healing composites can remedy many types of damage, including intralaminar cracking, delaminations, erosion, and damage to anti-corrosion coatings. Read about composites endowed with microvascular transport, which can deliver healing agents, coolants, or refrigerant fluids throughout the material. Find out about developments in nanotechnology resulting in lower gas permeability, improving storage tanks, food packaging, fire resistance, and thermal protection systems. Furthermore, discover composites with innovative excitation-response capabilities that are not found in nature. CONTRIBUTORS Chapter 1 Electromagnetic effects Ernest K. Condon III and Paul J. Jonas Wichita State University, National Institute for Aviation Research, Wichita, KS, USA Chapter 2 Lightning strike protection systems Gasser F. Abdelal Queen's University Belfast, Belfast, UK Chapter 3 Toughening for impact damage Timothy L. Norman Cedarville University, Cedarville, Ohio USA, and C. T. Sun Purdue University, West Lafayette, IN, USA Chapter 4 Erosion resistance Edmond Tobin, Aidan Cloonan, and Trevor Young University of Limerik, Republic of Ireland Chapter 5 Acoustic and vibration damping Edith R. Fotsing, Annie Ross, and Edu Ruiz Ecole Polytechnique de Montreal, Montreal, Canada Chapter 6 Viscoelastic damping treatments R.A.S. Moreira University of Aveiro, Aveiro, Portugal Chapter 7 Self-healing in polymers and structural composites Kathryn Mireles and Micheal R. Kessler Washington State University, Pullman, WA, USA Chapter 8 Microvascular transport Christopher J. Hansen University of Massachusetts Lowell, Lowell, MA, USA Chapter 9 Permeation Shaokai Wang Beihang University, Beijing, China, and Ayou Hao Florida State University, Tallahassee, FL, USA Chapter 10 Fire safety Ning Tian University of Ulster, Newtownabbey Co, Antrim, UK, and Aixi Zhou University of North Carolina at Charlotte, Charlotte, NC, USA Chapter 11 Thermal protection systems Maurizio Natali, Luigi Torre, and Jose Maria Kenny University of Perugia, Perugia, Italy Chapter 12 Magnetoelectric composites Tomas I. Muchenik and Ever J. Barbero West Virginia University, Morgantown, WV, USA LOOK INSIDE at http: //barbero.cadec-online.com/Multifunctional