## Introduction to Homotopy Theory

**Author**: Paul Selick

**Publisher:**American Mathematical Soc.

**ISBN:**9780821844366

**Category:**Mathematics

**Page:**188

**View:**2868

**DOWNLOAD NOW »**

This text is based on a one-semester graduate course taught by the author at The Fields Institute in fall 1995 as part of the homotopy theory program which constituted the Institute's major program that year. The intent of the course was to bring graduate students who had completed a first course in algebraic topology to the point where they could understand research lectures in homotopy theory and to prepare them for the other, more specialized graduate courses being held in conjunction with the program. The notes are divided into two parts: prerequisites and the course proper. Part I, the prerequisites, contains a review of material often taught in a first course in algebraic topology. It should provide a useful summary for students and non-specialists who are interested in learning the basics of algebraic topology. Included are some basic category theory, point set topology, the fundamental group, homological algebra, singular and cellular homology, and Poincare duality. Part II covers fibrations and cofibrations, Hurewicz and cellular approximation theorems, topics in classical homotopy theory, simplicial sets, fiber bundles, Hopf algebras, spectral sequences, localization, generalized homology and cohomology operations. This book collects in one place the material that a researcher in algebraic topology must know. The author has attempted to make this text a self-contained exposition. Precise statements and proofs are given of ``folk'' theorems which are difficult to find or do not exist in the literature.

## Modern Classical Homotopy Theory

**Author**: Jeffrey Strom

**Publisher:**American Mathematical Soc.

**ISBN:**0821852868

**Category:**Mathematics

**Page:**835

**View:**4265

**DOWNLOAD NOW »**

The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.

## Toric Topology

*International Conference, May 29-June 3, 2006, Osaka City University, Osaka, Japan*

**Author**: Megumi Harada

**Publisher:**American Mathematical Soc.

**ISBN:**0821844865

**Category:**Mathematics

**Page:**401

**View:**7498

**DOWNLOAD NOW »**

Toric topology is the study of algebraic, differential, symplectic-geometric, combinatorial, and homotopy-theoretic aspects of a particular class of torus actions whose quotients are highly structured. The combinatorial properties of this quotient and the equivariant topology of the original manifold interact in a rich variety of ways, thus illuminating subtle aspects of both the combinatorics and the equivariant topology. Many of the motivations and guiding principles of the field are provided by (though not limited to) the theory of toric varieties in algebraic geometry as well as that of symplectic toric manifolds in symplectic geometry. This volume is the proceedings of the International Conference on Toric Topology held in Osaka in May-June 2006. It contains about 25 research and survey articles written by conference speakers, covering many different aspects of, and approaches to, torus actions, such as those mentioned above.Some of the manuscripts are survey articles, intended to give a broad overview of an aspect of the subject; all manuscripts consciously aim to be accessible to a broad reading audience of students and researchers interested in the interaction of the subjects involved. We hope that this volume serves as an enticing invitation to this emerging field.

## Parametrized Homotopy Theory

**Author**: J. Peter May,Johann Sigurdsson

**Publisher:**American Mathematical Soc.

**ISBN:**0821839225

**Category:**Mathematics

**Page:**441

**View:**9364

**DOWNLOAD NOW »**

This book develops rigorous foundations for parametrized homotopy theory, which is the algebraic topology of spaces and spectra that are continuously parametrized by the points of a base space. It also begins the systematic study of parametrized homology and cohomology theories. The parametrized world provides the natural home for many classical notions and results, such as orientation theory, the Thom isomorphism, Atiyah and Poincare duality, transfer maps, the Adams and Wirthmuller isomorphisms, and the Serre and Eilenberg-Moore spectral sequences. But in addition to providing a clearer conceptual outlook on these classical notions, it also provides powerful methods to study new phenomena, such as twisted $K$-theory, and to make new constructions, such as iterated Thom spectra. Duality theory in the parametrized setting is particularly illuminating and comes in two flavors. One allows the construction and analysis of transfer maps, and a quite different one relates parametrized homology to parametrized cohomology. The latter is based formally on a new theory of duality in symmetric bicategories that is of considerable independent interest. The text brings together many recent developments in homotopy theory. It provides a highly structured theory of parametrized spectra, and it extends parametrized homotopy theory to the equivariant setting. The theory of topological model categories is given a more thorough treatment than is available in the literature. This is used, together with an interesting blend of classical methods, to resolve basic foundational problems that have no nonparametrized counterparts.

## Tensor Categories

**Author**: Pavel Etingof,Shlomo Gelaki,Dmitri Nikshych,Victor Ostrik

**Publisher:**American Mathematical Soc.

**ISBN:**1470420244

**Category:**Algebraic topology

**Page:**344

**View:**6591

**DOWNLOAD NOW »**

Is there a vector space whose dimension is the golden ratio? Of course not--the golden ratio is not an integer! But this can happen for generalizations of vector spaces--objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.

## Algebraic Topology

**Author**: Tammo tom Dieck

**Publisher:**European Mathematical Society

**ISBN:**9783037190487

**Category:**Mathematics

**Page:**567

**View:**4922

**DOWNLOAD NOW »**

This book is written as a textbook on algebraic topology. Prerequisites are standard point set topology (as recalled in the first chapter), elementary algebraic notions (modules, tensor product), and some terminology from category theory. The aim of the book is to introduce advanced undergraduate and graduate (masters) students to basic tools, concepts and results of algebraic topology. Sufficient background material from geometry and algebra is included.

## Simplicial Homotopy Theory

**Author**: Paul G. Goerss,John F. Jardine

**Publisher:**Birkhäuser

**ISBN:**3034887078

**Category:**Mathematics

**Page:**510

**View:**8716

**DOWNLOAD NOW »**

## C*-algebras by Example

**Author**: Kenneth R. Davidson

**Publisher:**American Mathematical Soc.

**ISBN:**9780821871898

**Category:**Mathematics

**Page:**309

**View:**1414

**DOWNLOAD NOW »**

The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of K-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty years has been based on a careful study of these special classes. While there are many books on C*-algebras and operator algebras available, this is the first one to attempt to explain the real examples that researchers use to test their hypotheses. Topic include AF algebras, Bunce-Deddens and Cuntz algebras, the Toeplitz algebra, irrational rotation algebras, group C*-algebras, discrete crossed products, abelian C*-algebras (spectral theory and approximate unitary equivalence) and extensions. It also introduces many modern concepts and results in the subject such as real rank zero algebras, topological stable rank, quasidiagonality, and various new constructions. These notes were compiled during the author's participation in the special year on C*-algebras at the Fields Institute of Mathematics during the 1994-1995 academic year. The field of C*-algebras touches upon many other areas of mathematics such as group representations, dynamical systems, physics, K-theory, and topology. The variety of examples offered in this text expose the student to many of these connections. A graduate student with a solid course in functional analysis should be able to read this book. This should prepare them to read much of the current literature. This book is reasonably self-contained, and the author has provided results from other areas when necessary.

## Homotopy Theory of Higher Categories

*From Segal Categories to n-Categories and Beyond*

**Author**: Carlos Simpson

**Publisher:**Cambridge University Press

**ISBN:**1139502190

**Category:**Mathematics

**Page:**N.A

**View:**1371

**DOWNLOAD NOW »**

The study of higher categories is attracting growing interest for its many applications in topology, algebraic geometry, mathematical physics and category theory. In this highly readable book, Carlos Simpson develops a full set of homotopical algebra techniques and proposes a working theory of higher categories. Starting with a cohesive overview of the many different approaches currently used by researchers, the author proceeds with a detailed exposition of one of the most widely used techniques: the construction of a Cartesian Quillen model structure for higher categories. The fully iterative construction applies to enrichment over any Cartesian model category, and yields model categories for weakly associative n-categories and Segal n-categories. A corollary is the construction of higher functor categories which fit together to form the (n+1)-category of n-categories. The approach uses Tamsamani's definition based on Segal's ideas, iterated as in Pelissier's thesis using modern techniques due to Barwick, Bergner, Lurie and others.

## The Homotopy Theory of (∞,1)-Categories

**Author**: Julia E. Bergner

**Publisher:**Cambridge University Press

**ISBN:**1108565042

**Category:**Mathematics

**Page:**N.A

**View:**2769

**DOWNLOAD NOW »**

The notion of an (∞,1)-category has become widely used in homotopy theory, category theory, and in a number of applications. There are many different approaches to this structure, all of them equivalent, and each with its corresponding homotopy theory. This book provides a relatively self-contained source of the definitions of the different models, the model structure (homotopy theory) of each, and the equivalences between the models. While most of the current literature focusses on how to extend category theory in this context, and centers in particular on the quasi-category model, this book offers a balanced treatment of the appropriate model structures for simplicial categories, Segal categories, complete Segal spaces, quasi-categories, and relative categories, all from a homotopy-theoretic perspective. Introductory chapters provide background in both homotopy and category theory and contain many references to the literature, thus making the book accessible to graduates and to researchers in related areas.

## Lecture Notes on Motivic Cohomology

**Author**: Carlo Mazza,Vladimir Voevodsky,Charles A. Weibel

**Publisher:**American Mathematical Soc.

**ISBN:**9780821838471

**Category:**Mathematics

**Page:**216

**View:**2570

**DOWNLOAD NOW »**

The notion of a motive is an elusive one, like its namesake 'the motif' of Cezanne's impressionist method of painting. This title includes lectures that correspond to one-hour lectures given by the author during the course he gave at the Institute for Advanced Study in Princeton on this subject in 1999-2000.

## Mirror Symmetry

**Author**: Kentaro Hori

**Publisher:**American Mathematical Soc.

**ISBN:**0821829556

**Category:**Mathematics

**Page:**929

**View:**8434

**DOWNLOAD NOW »**

Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar Vafa invariants. This book aims to give a single, cohesive treatment of mirror symmetry from both the mathematical and physical viewpoint. Parts 1 and 2 develop the necessary mathematical and physical background ``from scratch,'' and are intended for readers trying to learn across disciplines. The treatment is focussed, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topics in mirror symmetry, including the role of D-branes in the context of mirror symmetry, and some of their applications in physics and mathematics: topological strings and large $N$ Chern-Simons theory; geometric engineering; mirror symmetry at higher genus; Gopakumar-Vafa invariants; and Kontsevich's formulation of the mirror phenomenon as an equivalence of categories. This book grew out of an intense, month-long course on mirror symmetry at Pine Manor College, sponsored by the Clay Mathematics Institute. The lecturers have tried to summarize this course in a coherent, unified text.

## Dirichlet Branes and Mirror Symmetry

**Author**: N.A

**Publisher:**American Mathematical Soc.

**ISBN:**0821838482

**Category:**Mathematics

**Page:**681

**View:**3105

**DOWNLOAD NOW »**

Research in string theory over the last several decades has yielded a rich interaction with algebraic geometry. In 1985, the introduction of Calabi-Yau manifolds into physics as a way to compactify ten-dimensional space-time has led to exciting cross-fertilization between physics and mathematics, especially with the discovery of mirror symmetry in 1989. A new string revolution in the mid-1990s brought the notion of branes to the forefront. As foreseen by Kontsevich, these turned out to have mathematical counterparts in the derived category of coherent sheaves on an algebraic variety and the Fukaya category of a symplectic manifold. This has led to exciting new work, including the Strominger-Yau-Zaslow conjecture, which used the theory of branes to propose a geometric basis for mirror symmetry, the theory of stability conditions on triangulated categories, and a physical basis for the McKay correspondence. These developments have led to a great deal of new mathematical work. One difficulty in understanding all aspects of this work is that it requires being able to speak two different languages, the language of string theory and the language of algebraic geometry. The 2002 Clay School on Geometry and String Theory set out to bridge this gap, and this monograph builds on the expository lectures given there to provide an up-to-date discussion including subsequent developments. A natural sequel to the first Clay monograph on Mirror Symmetry, it presents the new ideas coming out of the interactions of string theory and algebraic geometry in a coherent logical context. We hope it will allow students and researchers who are familiar with the language of one of the two fields to gain acquaintance with the language of the other. The book first introduces the notion of Dirichlet brane in the context of topological quantum field theories, and then reviews the basics of string theory. After showing how notions of branes arose in string theory, it turns to an introduction to the algebraic geometry, sheaf theory, and homological algebra needed to define and work with derived categories. The physical existence conditions for branes are then discussed and compared in the context of mirror symmetry, culminating in Bridgeland's definition of stability structures, and its applications to the McKay correspondence and quantum geometry. The book continues with detailed treatments of the Strominger-Yau-Zaslow conjecture, Calabi-Yau metrics and homological mirror symmetry, and discusses more recent physical developments. This book is suitable for graduate students and researchers with either a physics or mathematics background, who are interested in the interface between string theory and algebraic geometry.

## Introduction to Symplectic Topology

**Author**: Dusa McDuff,Dietmar Salamon

**Publisher:**Oxford University Press

**ISBN:**0198794894

**Category:**Mathematics

**Page:**632

**View:**8041

**DOWNLOAD NOW »**

Over the last number of years powerful new methods in analysis and topology have led to the development of the modern global theory of symplectic topology, including several striking and important results. The first edition of Introduction to Symplectic Topology was published in 1995. The book was the first comprehensive introduction to the subject and became a key text in the area. A significantly revised second edition was published in 1998 introducing new sections and updates on the fast-developing area. This new third edition includes updates and new material to bring the book right up-to-date.

## Homotopy Theory of Function Spaces and Related Topics

**Author**: Yves Félix,Gregory Lupton,Samuel B. Smith

**Publisher:**American Mathematical Soc.

**ISBN:**0821849298

**Category:**Mathematics

**Page:**230

**View:**1404

**DOWNLOAD NOW »**

This volume contains the proceedings of the Workshop on Homotopy Theory of Function Spaces and Related Topics, which was held at the Mathematisches Forschungsinstitut Oberwolfach, in Germany, from April 5-11, 2009. This volume contains fourteen original research articles covering a broad range of topics that include: localization and rational homotopy theory, evaluation subgroups, free loop spaces, Whitehead products, spaces of algebraic maps, gauge groups, loop groups, operads, and string topology. In addition to reporting on various topics in the area, this volume is supposed to facilitate the exchange of ideas within Homotopy Theory of Function Spaces, and promote crossfertilization between Homotopy Theory of Function Spaces and other areas. With these latter aims in mind, this volume includes a survey article which, with its extensive bibliography, should help bring researchers and graduate students up to speed on activity in this field as well as a problems list, which is an expanded and edited version of problems discussed in sessions held at the conference. The problems list is intended to suggest directions for future work.

## Algebraic Homotopy

**Author**: Hans J. Baues

**Publisher:**Cambridge University Press

**ISBN:**9780521333764

**Category:**Mathematics

**Page:**466

**View:**834

**DOWNLOAD NOW »**

This book gives a general outlook on homotopy theory; fundamental concepts, such as homotopy groups and spectral sequences, are developed from a few axioms and are thus available in a broad variety of contexts. Many examples and applications in topology and algebra are discussed, including an introduction to rational homotopy theory in terms of both differential Lie algebras and De Rham algebras. The author describes powerful tools for homotopy classification problems, particularly for the classification of homotopy types and for the computation of the group homotopy equivalences. Applications and examples of such computations are given, including when the fundamental group is non-trivial. Moreover, the deep connection between the homotopy classification problems and the cohomology theory of small categories is demonstrated. The prerequisites of the book are few: elementary topology and algebra. Consequently, this account will be valuable for non-specialists and experts alike. It is an important supplement to the standard presentations of algebraic topology, homotopy theory, category theory and homological algebra.

## Bordism, Stable Homotopy, and Adams Spectral Sequences

**Author**: Stanley O. Kochman

**Publisher:**American Mathematical Soc.

**ISBN:**9780821806005

**Category:**Mathematics

**Page:**272

**View:**3380

**DOWNLOAD NOW »**

This book is a compilation of lecture notes that were prepared for the graduate course ``Adams Spectral Sequences and Stable Homotopy Theory'' given at The Fields Institute during the fall of 1995. The aim of this volume is to prepare students with a knowledge of elementary algebraic topology to study recent developments in stable homotopy theory, such as the nilpotence and periodicity theorems. Suitable as a text for an intermediate course in algebraic topology, this book provides a direct exposition of the basic concepts of bordism, characteristic classes, Adams spectral sequences, Brown-Peterson spectra and the computation of stable stems. The key ideas are presented in complete detail without becoming encyclopedic. The approach to characteristic classes and some of the methods for computing stable stems have not been published previously. All results are proved in complete detail. Only elementary facts from algebraic topology and homological algebra are assumed. Each chapter concludes with a guide for further study.

## Fibrewise Homotopy Theory

**Author**: Michael Charles Crabb,Ioan Mackenzie James

**Publisher:**Springer Science & Business Media

**ISBN:**1447112652

**Category:**Mathematics

**Page:**341

**View:**2409

**DOWNLOAD NOW »**

Topology occupies a central position in modern mathematics, and the concept of the fibre bundle provides an appropriate framework for studying differential geometry. Fibrewise homotopy theory is a very large subject that has attracted a good deal of research in recent years. This book provides an overview of the subject as it stands at present.

## P-adic Geometry

*Lectures from the 2007 Arizona Winter School*

**Author**: Matthew Baker,David Savitt,Dinesh S. Thakur

**Publisher:**American Mathematical Soc.

**ISBN:**0821844687

**Category:**Mathematics

**Page:**203

**View:**3162

**DOWNLOAD NOW »**

In recent decades, $p$-adic geometry and $p$-adic cohomology theories have become indispensable tools in number theory, algebraic geometry, and the theory of automorphic representations. The Arizona Winter School 2007, on which the current book is based, was a unique opportunity to introduce graduate students to this subject. Following invaluable introductions by John Tate and Vladimir Berkovich, two pioneers of non-archimedean geometry, Brian Conrad's chapter introduces the general theory of Tate's rigid analytic spaces, Raynaud's view of them as the generic fibers of formal schemes, and Berkovich spaces. Samit Dasgupta and Jeremy Teitelbaum discuss the $p$-adic upper half plane as an example of a rigid analytic space and give applications to number theory (modular forms and the $p$-adic Langlands program). Matthew Baker offers a detailed discussion of the Berkovich projective line and $p$-adic potential theory on that and more general Berkovich curves. Finally, Kiran Kedlaya discusses theoretical and computational aspects of $p$-adic cohomology and the zeta functions of varieties. This book will be a welcome addition to the library of any graduate student and researcher who is interested in learning about the techniques of $p$-adic geometry.

## Cubical Homotopy Theory

**Author**: Brian A. Munson,Ismar Volić

**Publisher:**Cambridge University Press

**ISBN:**1107030250

**Category:**Mathematics

**Page:**625

**View:**2960

**DOWNLOAD NOW »**

A modern, example-driven introduction to cubical diagrams and related topics such as homotopy limits and cosimplicial spaces.