Introduction to Stochastic Dynamic Programming


Author: Sheldon M. Ross
Publisher: Academic Press
ISBN: 1483269094
Category: Mathematics
Page: 178
View: 898
DOWNLOAD NOW »
Introduction to Stochastic Dynamic Programming presents the basic theory and examines the scope of applications of stochastic dynamic programming. The book begins with a chapter on various finite-stage models, illustrating the wide range of applications of stochastic dynamic programming. Subsequent chapters study infinite-stage models: discounting future returns, minimizing nonnegative costs, maximizing nonnegative returns, and maximizing the long-run average return. Each of these chapters first considers whether an optimal policy need exist—providing counterexamples where appropriate—and then presents methods for obtaining such policies when they do. In addition, general areas of application are presented. The final two chapters are concerned with more specialized models. These include stochastic scheduling models and a type of process known as a multiproject bandit. The mathematical prerequisites for this text are relatively few. No prior knowledge of dynamic programming is assumed and only a moderate familiarity with probability— including the use of conditional expectation—is necessary.

Introduction to Stochastic Dynamic Programming


Author: Sheldon M. Ross
Publisher: Elsevier
ISBN: 0080571964
Category: Mathematics
Page: 184
View: 4704
DOWNLOAD NOW »
Introduction to Stochastic Dynamic Programming

Introduction to stochastic dynamic programming


Author: Sheldon M. Ross
Publisher: Academic Pr
ISBN: N.A
Category: Mathematics
Page: 164
View: 7864
DOWNLOAD NOW »


Approximate Dynamic Programming

Solving the Curses of Dimensionality
Author: Warren B. Powell
Publisher: John Wiley & Sons
ISBN: 9780470182956
Category: Mathematics
Page: 480
View: 9851
DOWNLOAD NOW »


Introduction to Stochastic Programming


Author: John R. Birge,François Louveaux
Publisher: Springer Science & Business Media
ISBN: 1461402379
Category: Business & Economics
Page: 485
View: 420
DOWNLOAD NOW »
The aim of stochastic programming is to find optimal decisions in problems which involve uncertain data. This field is currently developing rapidly with contributions from many disciplines including operations research, mathematics, and probability. At the same time, it is now being applied in a wide variety of subjects ranging from agriculture to financial planning and from industrial engineering to computer networks. This textbook provides a first course in stochastic programming suitable for students with a basic knowledge of linear programming, elementary analysis, and probability. The authors aim to present a broad overview of the main themes and methods of the subject. Its prime goal is to help students develop an intuition on how to model uncertainty into mathematical problems, what uncertainty changes bring to the decision process, and what techniques help to manage uncertainty in solving the problems. In this extensively updated new edition there is more material on methods and examples including several new approaches for discrete variables, new results on risk measures in modeling and Monte Carlo sampling methods, a new chapter on relationships to other methods including approximate dynamic programming, robust optimization and online methods. The book is highly illustrated with chapter summaries and many examples and exercises. Students, researchers and practitioners in operations research and the optimization area will find it particularly of interest. Review of First Edition: "The discussion on modeling issues, the large number of examples used to illustrate the material, and the breadth of the coverage make 'Introduction to Stochastic Programming' an ideal textbook for the area." (Interfaces, 1998)

Introduction to methods of optimization


Author: Leon Cooper,David Steinberg
Publisher: W B Saunders Co
ISBN: N.A
Category: Mathematics
Page: 381
View: 1035
DOWNLOAD NOW »


Stochastic Dynamic Programming and the Control of Queueing Systems


Author: Linn I. Sennott
Publisher: John Wiley & Sons
ISBN: 0470317876
Category: Mathematics
Page: 354
View: 7803
DOWNLOAD NOW »
A path-breaking account of Markov decision processes-theory and computation This book's clear presentation of theory, numerous chapter-end problems, and development of a unified method for the computation of optimal policies in both discrete and continuous time make it an excellent course text for graduate students and advanced undergraduates. Its comprehensive coverage of important recent advances in stochastic dynamic programming makes it a valuable working resource for operations research professionals, management scientists, engineers, and others. Stochastic Dynamic Programming and the Control of Queueing Systems presents the theory of optimization under the finite horizon, infinite horizon discounted, and average cost criteria. It then shows how optimal rules of operation (policies) for each criterion may be numerically determined. A great wealth of examples from the application area of the control of queueing systems is presented. Nine numerical programs for the computation of optimal policies are fully explicated. The Pascal source code for the programs is available for viewing and downloading on the Wiley Web site at www.wiley.com/products/subject/mathematics. The site contains a link to the author's own Web site and is also a place where readers may discuss developments on the programs or other aspects of the material. The source files are also available via ftp at ftp://ftp.wiley.com/public/sci_tech_med/stochastic Stochastic Dynamic Programming and the Control of Queueing Systems features: * Path-breaking advances in Markov decision process techniques, brought together for the first time in book form * A theorem/proof format (proofs may be omitted without loss of continuity) * Development of a unified method for the computation of optimal rules of system operation * Numerous examples drawn mainly from the control of queueing systems * Detailed discussions of nine numerical programs * Helpful chapter-end problems * Appendices with complete treatment of background material

Markov Decision Processes

Discrete Stochastic Dynamic Programming
Author: Martin L. Puterman
Publisher: John Wiley & Sons
ISBN: 1118625870
Category: Mathematics
Page: 672
View: 2197
DOWNLOAD NOW »
The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "This text is unique in bringing together so many results hitherto found only in part in other texts and papers. . . . The text is fairly self-contained, inclusive of some basic mathematical results needed, and provides a rich diet of examples, applications, and exercises. The bibliographical material at the end of each chapter is excellent, not only from a historical perspective, but because it is valuable for researchers in acquiring a good perspective of the MDP research potential." —Zentralblatt fur Mathematik ". . . it is of great value to advanced-level students, researchers, and professional practitioners of this field to have now a complete volume (with more than 600 pages) devoted to this topic. . . . Markov Decision Processes: Discrete Stochastic Dynamic Programming represents an up-to-date, unified, and rigorous treatment of theoretical and computational aspects of discrete-time Markov decision processes." —Journal of the American Statistical Association

Applied Probability Models with Optimization Applications


Author: Sheldon M. Ross
Publisher: Courier Corporation
ISBN: 0486318648
Category: Mathematics
Page: 224
View: 7683
DOWNLOAD NOW »
Concise advanced-level introduction to stochastic processes that arise in applied probability. Poisson process, renewal theory, Markov chains, Brownian motion, much more. Problems. References. Bibliography. 1970 edition.

Stochastic Control Theory

Dynamic Programming Principle
Author: Makiko Nisio
Publisher: Springer
ISBN: 4431551239
Category: Mathematics
Page: 250
View: 4244
DOWNLOAD NOW »
This book offers a systematic introduction to the optimal stochastic control theory via the dynamic programming principle, which is a powerful tool to analyze control problems. First we consider completely observable control problems with finite horizons. Using a time discretization we construct a nonlinear semigroup related to the dynamic programming principle (DPP), whose generator provides the Hamilton–Jacobi–Bellman (HJB) equation, and we characterize the value function via the nonlinear semigroup, besides the viscosity solution theory. When we control not only the dynamics of a system but also the terminal time of its evolution, control-stopping problems arise. This problem is treated in the same frameworks, via the nonlinear semigroup. Its results are applicable to the American option price problem. Zero-sum two-player time-homogeneous stochastic differential games and viscosity solutions of the Isaacs equations arising from such games are studied via a nonlinear semigroup related to DPP (the min-max principle, to be precise). Using semi-discretization arguments, we construct the nonlinear semigroups whose generators provide lower and upper Isaacs equations. Concerning partially observable control problems, we refer to stochastic parabolic equations driven by colored Wiener noises, in particular, the Zakai equation. The existence and uniqueness of solutions and regularities as well as Itô's formula are stated. A control problem for the Zakai equations has a nonlinear semigroup whose generator provides the HJB equation on a Banach space. The value function turns out to be a unique viscosity solution for the HJB equation under mild conditions. This edition provides a more generalized treatment of the topic than does the earlier book Lectures on Stochastic Control Theory (ISI Lecture Notes 9), where time-homogeneous cases are dealt with. Here, for finite time-horizon control problems, DPP was formulated as a one-parameter nonlinear semigroup, whose generator provides the HJB equation, by using a time-discretization method. The semigroup corresponds to the value function and is characterized as the envelope of Markovian transition semigroups of responses for constant control processes. Besides finite time-horizon controls, the book discusses control-stopping problems in the same frameworks.

Dynamic Programming

Models and Applications
Author: Eric V. Denardo
Publisher: Courier Corporation
ISBN: 0486150852
Category: Technology & Engineering
Page: 240
View: 5915
DOWNLOAD NOW »
Introduction to sequential decision processes covers use of dynamic programming in studying models of resource allocation, methods for approximating solutions of control problems in continuous time, production control, more. 1982 edition.

Continuous-time Stochastic Control and Optimization with Financial Applications


Author: Huyên Pham
Publisher: Springer Science & Business Media
ISBN: 3540895000
Category: Mathematics
Page: 232
View: 4887
DOWNLOAD NOW »
Stochastic optimization problems arise in decision-making problems under uncertainty, and find various applications in economics and finance. On the other hand, problems in finance have recently led to new developments in the theory of stochastic control. This volume provides a systematic treatment of stochastic optimization problems applied to finance by presenting the different existing methods: dynamic programming, viscosity solutions, backward stochastic differential equations, and martingale duality methods. The theory is discussed in the context of recent developments in this field, with complete and detailed proofs, and is illustrated by means of concrete examples from the world of finance: portfolio allocation, option hedging, real options, optimal investment, etc. This book is directed towards graduate students and researchers in mathematical finance, and will also benefit applied mathematicians interested in financial applications and practitioners wishing to know more about the use of stochastic optimization methods in finance.

Dynamic Programming and Optimal Control


Author: Dimitri P. Bertsekas
Publisher: N.A
ISBN: 9781886529267
Category: Mathematics
Page: 543
View: 6174
DOWNLOAD NOW »
"The leading and most up-to-date textbook on the far-ranging algorithmic methododogy of Dynamic Programming, which can be used for optimal control, Markovian decision problems, planning and sequential decision making under uncertainty, and discrete/combinatorial optimization. The treatment focuses on basic unifying themes, and conceptual foundations. It illustrates the versatility, power, and generality of the method with many examples and applications from engineering, operations research, and other fields. It also addresses extensively the practical application of the methodology, possibly through the use of approximations, and provides an extensive treatment of the far-reaching methodology of Neuro-Dynamic Programming/Reinforcement Learning. The first volume is oriented towards modeling, conceptualization, and finite-horizon problems, but also includes a substantive introduction to infinite horizon problems that is suitable for classroom use. The second volume is oriented towards mathematical analysis and computation, treats infinite horizon problems extensively, and provides an up-to-date account of approximate large-scale dynamic programming and reinforcement learning. The text contains many illustrations, worked-out examples, and exercises."--Publisher's website.

Economic Dynamics

Theory and Computation
Author: John Stachurski
Publisher: MIT Press
ISBN: 0262012774
Category: Business & Economics
Page: 373
View: 6051
DOWNLOAD NOW »
"Topics covered in detail include nonlinear dynamic systems, finite state Markov chains, stochastic dynamic programming, and stochastic stability and computation of equilibria. The models are predominantly nonlinear, and the emphasis is on studying nonlinear systems in their original form, rather than by means of rudimentary approximation methods such as linearization."--pub. desc.

Dynamic Programming and Its Application to Optimal Control


Author: N.A
Publisher: Elsevier
ISBN: 9780080955896
Category: Mathematics
Page: 322
View: 2034
DOWNLOAD NOW »
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation; methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; and methods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory. As a result, the book represents a blend of new methods in general computational analysis, and specific, but also generic, techniques for study of systems theory ant its particular branches, such as optimal filtering and information compression. - Best operator approximation, - Non-Lagrange interpolation, - Generic Karhunen-Loeve transform - Generalised low-rank matrix approximation - Optimal data compression - Optimal nonlinear filtering

Abstract Dynamic Programming


Author: Dimitri P. Bertsekas
Publisher: N.A
ISBN: 9781886529427
Category: Computers
Page: 248
View: 5389
DOWNLOAD NOW »


Stochastic Optimization Models in Finance


Author: W. T. Ziemba,R. G. Vickson
Publisher: Academic Press
ISBN: 1483273997
Category: Business & Economics
Page: 736
View: 1899
DOWNLOAD NOW »
Stochastic Optimization Models in Finance focuses on the applications of stochastic optimization models in finance, with emphasis on results and methods that can and have been utilized in the analysis of real financial problems. The discussions are organized around five themes: mathematical tools; qualitative economic results; static portfolio selection models; dynamic models that are reducible to static models; and dynamic models. This volume consists of five parts and begins with an overview of expected utility theory, followed by an analysis of convexity and the Kuhn-Tucker conditions. The reader is then introduced to dynamic programming; stochastic dominance; and measures of risk aversion. Subsequent chapters deal with separation theorems; existence and diversification of optimal portfolio policies; effects of taxes on risk taking; and two-period consumption models and portfolio revision. The book also describes models of optimal capital accumulation and portfolio selection. This monograph will be of value to mathematicians and economists as well as to those interested in economic theory and mathematical economics.

Stochastic-Process Limits

An Introduction to Stochastic-Process Limits and Their Application to Queues
Author: Ward Whitt
Publisher: Springer Science & Business Media
ISBN: 0387217487
Category: Mathematics
Page: 602
View: 5214
DOWNLOAD NOW »
From the reviews: "The material is self-contained, but it is technical and a solid foundation in probability and queuing theory is beneficial to prospective readers. [... It] is intended to be accessible to those with less background. This book is a must to researchers and graduate students interested in these areas." ISI Short Book Reviews

Stochastic Control in Discrete and Continuous Time


Author: Atle Seierstad
Publisher: Springer Science & Business Media
ISBN: 0387766170
Category: Mathematics
Page: 222
View: 926
DOWNLOAD NOW »
This book contains an introduction to three topics in stochastic control: discrete time stochastic control, i. e. , stochastic dynamic programming (Chapter 1), piecewise - terministic control problems (Chapter 3), and control of Ito diffusions (Chapter 4). The chapters include treatments of optimal stopping problems. An Appendix - calls material from elementary probability theory and gives heuristic explanations of certain more advanced tools in probability theory. The book will hopefully be of interest to students in several ?elds: economics, engineering, operations research, ?nance, business, mathematics. In economics and business administration, graduate students should readily be able to read it, and the mathematical level can be suitable for advanced undergraduates in mathem- ics and science. The prerequisites for reading the book are only a calculus course and a course in elementary probability. (Certain technical comments may demand a slightly better background. ) As this book perhaps (and hopefully) will be read by readers with widely diff- ing backgrounds, some general advice may be useful: Don’t be put off if paragraphs, comments, or remarks contain material of a seemingly more technical nature that you don’t understand. Just skip such material and continue reading, it will surely not be needed in order to understand the main ideas and results. The presentation avoids the use of measure theory.

Stochastic Optimal Control in Infinite Dimension

Dynamic Programming and HJB Equations
Author: Giorgio Fabbri,Fausto Gozzi,Andrzej Święch
Publisher: Springer
ISBN: 3319530674
Category: Mathematics
Page: 916
View: 4139
DOWNLOAD NOW »
Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces.