Linguistic Fundamentals for Natural Language Processing

100 Essentials from Morphology and Syntax
Author: Emily M. Bender
Publisher: Morgan & Claypool Publishers
ISBN: 1627050124
Category: Computers
Page: 184
View: 1053
DOWNLOAD NOW »
Many NLP tasks have at their core a subtask of extracting the dependencies—who did what to whom—from natural language sentences. This task can be understood as the inverse of the problem solved in different ways by diverse human languages, namely, how to indicate the relationship between different parts of a sentence. Understanding how languages solve the problem can be extremely useful in both feature design and error analysis in the application of machine learning to NLP. Likewise, understanding cross-linguistic variation can be important for the design of MT systems and other multilingual applications. The purpose of this book is to present in a succinct and accessible fashion information about the morphological and syntactic structure of human languages that can be useful in creating more linguistically sophisticated, more language-independent, and thus more successful NLP systems. Table of Contents: Acknowledgments / Introduction/motivation / Morphology: Introduction / Morphophonology / Morphosyntax / Syntax: Introduction / Parts of speech / Heads, arguments, and adjuncts / Argument types and grammatical functions / Mismatches between syntactic position and semantic roles / Resources / Bibliography / Author's Biography / General Index / Index of Languages

Foundations of Statistical Natural Language Processing


Author: Christopher D. Manning,Hinrich Schütze
Publisher: MIT Press
ISBN: 9780262133609
Category: Language Arts & Disciplines
Page: 680
View: 8671
DOWNLOAD NOW »
An introduction to statistical natural language processing (NLP). The text contains the theory and algorithms needed for building NLP tools. Topics covered include: mathematical and linguistic foundations; statistical methods; collocation finding; word sense disambiguation; and probalistic parsing.

Linguistic Structure Prediction


Author: Noah A. Smith
Publisher: Morgan & Claypool Publishers
ISBN: 1608454053
Category: Language Arts & Disciplines
Page: 248
View: 4954
DOWNLOAD NOW »
A major part of natural language processing now depends on the use of text data to build linguistic analyzers. We consider statistical, computational approaches to modeling linguistic structure. We seek to unify across many approaches and many kinds of linguistic structures. Assuming a basic understanding of natural language processing and/or machine learning, we seek to bridge the gap between the two fields. Approaches to decoding (i.e., carrying out linguistic structure prediction) and supervised and unsupervised learning of models that predict discrete structures as outputs are the focus. We also survey natural language processing problems to which these methods are being applied, and we address related topics in probabilistic inference, optimization, and experimental methodology. Table of Contents: Representations and Linguistic Data / Decoding: Making Predictions / Learning Structure from Annotated Data / Learning Structure from Incomplete Data / Beyond Decoding: Inference

Neural Network Methods in Natural Language Processing


Author: Yoav Goldberg
Publisher: Morgan & Claypool Publishers
ISBN: 162705295X
Category: Computers
Page: 309
View: 5840
DOWNLOAD NOW »
Neural networks are a family of powerful machine learning models. This book focuses on the application of neural network models to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries. The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models. These architectures and techniques are the driving force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects of multi-task learning.

The Oxford Handbook of Computational Linguistics


Author: Ruslan Mitkov
Publisher: Oxford University Press
ISBN: 019927634X
Category: Computers
Page: 786
View: 6408
DOWNLOAD NOW »
A state-of-the-art reference to one of the most active and productive fields in linguistics: computational linguistics. Thirty-eight chapters, commissioned from experts all over the world, describe the major concepts, methods, and applications. Part I provides an overview of the field; Part II describes current tasks, techniques, and tools in natural language processing; and Part III surveys current applications.

Biomedical Natural Language Processing


Author: Kevin Bretonnel Cohen,Dina Demner-Fushman
Publisher: John Benjamins Publishing Company
ISBN: 9027271062
Category: Computers
Page: 160
View: 2414
DOWNLOAD NOW »
Biomedical Natural Language Processing is a comprehensive tour through the classic and current work in the field. It discusses all subjects from both a rule-based and a machine learning approach, and also describes each subject from the perspective of both biological science and clinical medicine. The intended audience is readers who already have a background in natural language processing, but a clear introduction makes it accessible to readers from the fields of bioinformatics and computational biology, as well. The book is suitable as a reference, as well as a text for advanced courses in biomedical natural language processing and text mining.

Natural Language Processing for the Semantic Web


Author: Diana Maynard,Kalina Bontcheva
Publisher: Morgan & Claypool Publishers
ISBN: 1627056327
Category: Computers
Page: 194
View: 4298
DOWNLOAD NOW »
This book introduces core natural language processing (NLP) technologies to non-experts in an easily accessible way, as a series of building blocks that lead the user to understand key technologies, why they are required, and how to integrate them into Semantic Web applications. Natural language processing and Semantic Web technologies have different, but complementary roles in data management. Combining these two technologies enables structured and unstructured data to merge seamlessly. Semantic Web technologies aim to convert unstructured data to meaningful representations, which benefit enormously from the use of NLP technologies, thereby enabling applications such as connecting text to Linked Open Data, connecting texts to each other, semantic searching, information visualization, and modeling of user behavior in online networks. The first half of this book describes the basic NLP processing tools: tokenization, part-of-speech tagging, and morphological analysis, in addition to the main tools required for an information extraction system (named entity recognition and relation extraction) which build on these components. The second half of the book explains how Semantic Web and NLP technologies can enhance each other, for example via semantic annotation, ontology linking, and population. These chapters also discuss sentiment analysis, a key component in making sense of textual data, and the difficulties of performing NLP on social media, as well as some proposed solutions. The book finishes by investigating some applications of these tools, focusing on semantic search and visualization, modeling user behavior, and an outlook on the future.

Natural Language Processing with Python

Analyzing Text with the Natural Language Toolkit
Author: Steven Bird,Ewan Klein,Edward Loper
Publisher: "O'Reilly Media, Inc."
ISBN: 0596555717
Category: Computers
Page: 504
View: 5018
DOWNLOAD NOW »
This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Computational Modeling of Narrative


Author: Inderjeet Mani
Publisher: Morgan & Claypool Publishers
ISBN: 1608459810
Category: Computers
Page: 144
View: 5944
DOWNLOAD NOW »
The field of narrative (or story) understanding and generation is one of the oldest in natural language processing (NLP) and artificial intelligence (AI), which is hardly surprising, since storytelling is such a fundamental and familiar intellectual and social activity. In recent years, the demands of interactive entertainment and interest in the creation of engaging narratives with life-like characters have provided a fresh impetus to this field. This book provides an overview of the principal problems, approaches, and challenges faced today in modeling the narrative structure of stories. The book introduces classical narratological concepts from literary theory and their mapping to computational approaches. It demonstrates how research in AI and NLP has modeled character goals, causality, and time using formalisms from planning, case-based reasoning, and temporal reasoning, and discusses fundamental limitations in such approaches. It proposes new representations for embedded narratives and fictional entities, for assessing the pace of a narrative, and offers an empirical theory of audience response. These notions are incorporated into an annotation scheme called NarrativeML. The book identifies key issues that need to be addressed, including annotation methods for long literary narratives, the representation of modality and habituality, and characterizing the goals of narrators. It also suggests a future characterized by advanced text mining of narrative structure from large-scale corpora and the development of a variety of useful authoring aids. This is the first book to provide a systematic foundation that integrates together narratology, AI, and computational linguistics. It can serve as a narratology primer for computer scientists and an elucidation of computational narratology for literary theorists. It is written in a highly accessible manner and is intended for use by a broad scientific audience that includes linguists (computational and formal semanticists), AI researchers, cognitive scientists, computer scientists, game developers, and narrative theorists.

Speech and Language Processing


Author: Daniel Jurafsky,James H Martin,Peter Norvig,Stuart Russell
Publisher: Pearson
ISBN: 0133252930
Category: Computers
Page: 1024
View: 4593
DOWNLOAD NOW »
This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. For undergraduate or advanced undergraduate courses in Classical Natural Language Processing, Statistical Natural Language Processing, Speech Recognition, Computational Linguistics, and Human Language Processing. An explosion of Web-based language techniques, merging of distinct fields, availability of phone-based dialogue systems, and much more make this an exciting time in speech and language processing. The first of its kind to thoroughly cover language technology – at all levels and with all modern technologies – this text takes an empirical approach to the subject, based on applying statistical and other machine-learning algorithms to large corporations. The authors cover areas that traditionally are taught in different courses, to describe a unified vision of speech and language processing. Emphasis is on practical applications and scientific evaluation. An accompanying Website contains teaching materials for instructors, with pointers to language processing resources on the Web. The Second Edition offers a significant amount of new and extended material. Supplements: Click on the "Resources" tab to View Downloadable Files: Solutions Power Point Lecture Slides - Chapters 1-5, 8-10, 12-13 and 24 Now Available! For additional resourcse visit the author website: http://www.cs.colorado.edu/~martin/slp.html

Natural Language Annotation for Machine Learning

A Guide to Corpus-Building for Applications
Author: James Pustejovsky,Amber Stubbs
Publisher: "O'Reilly Media, Inc."
ISBN: 1449359760
Category: Computers
Page: 342
View: 4911
DOWNLOAD NOW »
Create your own natural language training corpus for machine learning. Whether you’re working with English, Chinese, or any other natural language, this hands-on book guides you through a proven annotation development cycle—the process of adding metadata to your training corpus to help ML algorithms work more efficiently. You don’t need any programming or linguistics experience to get started. Using detailed examples at every step, you’ll learn how the MATTER Annotation Development Process helps you Model, Annotate, Train, Test, Evaluate, and Revise your training corpus. You also get a complete walkthrough of a real-world annotation project. Define a clear annotation goal before collecting your dataset (corpus) Learn tools for analyzing the linguistic content of your corpus Build a model and specification for your annotation project Examine the different annotation formats, from basic XML to the Linguistic Annotation Framework Create a gold standard corpus that can be used to train and test ML algorithms Select the ML algorithms that will process your annotated data Evaluate the test results and revise your annotation task Learn how to use lightweight software for annotating texts and adjudicating the annotations This book is a perfect companion to O’Reilly’s Natural Language Processing with Python.

Language and Computers


Author: Markus Dickinson,Chris Brew,Detmar Meurers
Publisher: John Wiley & Sons
ISBN: 111832496X
Category: Language Arts & Disciplines
Page: 256
View: 5654
DOWNLOAD NOW »
Language and Computers introduces students to the fundamentals of how computers are used to represent, process, and organize textual and spoken information. Concepts are grounded in real-world examples familiar to students’ experiences of using language and computers in everyday life. A real-world introduction to the fundamentals of how computers process language, written specifically for the undergraduate audience, introducing key concepts from computational linguistics. Offers a comprehensive explanation of the problems computers face in handling natural language Covers a broad spectrum of language-related applications and issues, including major computer applications involving natural language and the social and ethical implications of these new developments The book focuses on real-world examples with which students can identify, using these to explore the technology and how it works Features “under-the-hood” sections that give greater detail on selected advanced topics, rendering the book appropriate for more advanced courses, or for independent study by the motivated reader.

Pattern Recognition in Speech and Language Processing


Author: Wu Chou,Biing-Hwang Juang
Publisher: CRC Press
ISBN: 9780203010525
Category: Technology & Engineering
Page: 416
View: 6766
DOWNLOAD NOW »
Over the last 20 years, approaches to designing speech and language processing algorithms have moved from methods based on linguistics and speech science to data-driven pattern recognition techniques. These techniques have been the focus of intense, fast-moving research and have contributed to significant advances in this field. Pattern Recognition in Speech and Language Processing offers a systematic, up-to-date presentation of these recent developments. It begins with the fundamentals and recent theoretical advances in pattern recognition, with emphasis on classifier design criteria and optimization procedures. The focus then shifts to the application of these techniques to speech processing, with chapters exploring advances in applying pattern recognition to real speech and audio processing systems. The final section of the book examines topics related to pattern recognition in language processing: topics that represent promising new trends with direct impact on information processing systems for the Web, broadcast news, and other content-rich information resources. Each self-contained chapter includes figures, tables, diagrams, and references. The collective effort of experts at the forefront of the field, Pattern Recognition in Speech and Language Processing offers in-depth, insightful discussions on new developments and contains a wealth of information integral to the further development of human-machine communications.

Semisupervised Learning for Computational Linguistics


Author: Steven Abney
Publisher: CRC Press
ISBN: 9781420010800
Category: Business & Economics
Page: 320
View: 9755
DOWNLOAD NOW »
The rapid advancement in the theoretical understanding of statistical and machine learning methods for semisupervised learning has made it difficult for nonspecialists to keep up to date in the field. Providing a broad, accessible treatment of the theory as well as linguistic applications, Semisupervised Learning for Computational Linguistics offers self-contained coverage of semisupervised methods that includes background material on supervised and unsupervised learning. The book presents a brief history of semisupervised learning and its place in the spectrum of learning methods before moving on to discuss well-known natural language processing methods, such as self-training and co-training. It then centers on machine learning techniques, including the boundary-oriented methods of perceptrons, boosting, support vector machines (SVMs), and the null-category noise model. In addition, the book covers clustering, the expectation-maximization (EM) algorithm, related generative methods, and agreement methods. It concludes with the graph-based method of label propagation as well as a detailed discussion of spectral methods. Taking an intuitive approach to the material, this lucid book facilitates the application of semisupervised learning methods to natural language processing and provides the framework and motivation for a more systematic study of machine learning.

The Handbook of Computational Linguistics and Natural Language Processing


Author: Alexander Clark,Chris Fox,Shalom Lappin
Publisher: John Wiley & Sons
ISBN: 1118448677
Category: Language Arts & Disciplines
Page: 650
View: 6288
DOWNLOAD NOW »
This comprehensive reference work provides an overview of the concepts, methodologies, and applications in computational linguistics and natural language processing (NLP). Features contributions by the top researchers in the field, reflecting the work that is driving the discipline forward Includes an introduction to the major theoretical issues in these fields, as well as the central engineering applications that the work has produced Presents the major developments in an accessible way, explaining the close connection between scientific understanding of the computational properties of natural language and the creation of effective language technologies Serves as an invaluable state-of-the-art reference source for computational linguists and software engineers developing NLP applications in industrial research and development labs of software companies

Fundamentals of Predictive Text Mining


Author: Sholom M. Weiss,Nitin Indurkhya,Tong Zhang
Publisher: Springer Science & Business Media
ISBN: 9781849962261
Category: Computers
Page: 226
View: 1047
DOWNLOAD NOW »
One consequence of the pervasive use of computers is that most documents originate in digital form. Widespread use of the Internet makes them readily available. Text mining – the process of analyzing unstructured natural-language text – is concerned with how to extract information from these documents. Developed from the authors’ highly successful Springer reference on text mining, Fundamentals of Predictive Text Mining is an introductory textbook and guide to this rapidly evolving field. Integrating topics spanning the varied disciplines of data mining, machine learning, databases, and computational linguistics, this uniquely useful book also provides practical advice for text mining. In-depth discussions are presented on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Background on data mining is beneficial, but not essential. Where advanced concepts are discussed that require mathematical maturity for a proper understanding, intuitive explanations are also provided for less advanced readers. Topics and features: presents a comprehensive, practical and easy-to-read introduction to text mining; includes chapter summaries, useful historical and bibliographic remarks, and classroom-tested exercises for each chapter; explores the application and utility of each method, as well as the optimum techniques for specific scenarios; provides several descriptive case studies that take readers from problem description to systems deployment in the real world; includes access to industrial-strength text-mining software that runs on any computer; describes methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English); contains links to free downloadable software and other supplementary instruction material. Fundamentals of Predictive Text Mining is an essential resource for IT professionals and managers, as well as a key text for advanced undergraduate computer science students and beginning graduate students. Dr. Sholom M. Weiss is a Research Staff Member with the IBM Predictive Modeling group, in Yorktown Heights, New York, and Professor Emeritus of Computer Science at Rutgers University. Dr. Nitin Indurkhya is Professor at the School of Computer Science and Engineering, University of New South Wales, Australia, as well as founder and president of data-mining consulting company Data-Miner Pty Ltd. Dr. Tong Zhang is Associate Professor at the Department of Statistics and Biostatistics at Rutgers University, New Jersey.

Natural Language Processing


Author: N.A
Publisher: I. K. International Pvt Ltd
ISBN: 9380578776
Category: Artificial intelligence
Page: 202
View: 7166
DOWNLOAD NOW »


Introducing Speech and Language Processing


Author: John Coleman
Publisher: Cambridge University Press
ISBN: 9780521530699
Category: Computers
Page: 301
View: 7567
DOWNLOAD NOW »
Provides a clearly-written, concise and accessible introduction to speech and language processing, with accompanying software.

Natural Language Processing with Java and LingPipe Cookbook


Author: Breck Baldwin,Krishna Dayanidhi
Publisher: Packt Publishing Ltd
ISBN: 1783284684
Category: Computers
Page: 312
View: 3016
DOWNLOAD NOW »
This book is for experienced Java developers with NLP needs, whether academics, industrialists, or hobbyists. A basic knowledge of NLP terminology will be beneficial.

Intelligent Natural Language Processing: Trends and Applications


Author: Khaled Shaalan,Aboul Ella Hassanien,Fahmy Tolba
Publisher: Springer
ISBN: 3319670565
Category: Computers
Page: 776
View: 5736
DOWNLOAD NOW »
This book brings together scientists, researchers, practitioners, and students from academia and industry to present recent and ongoing research activities concerning the latest advances, techniques, and applications of natural language processing systems, and to promote the exchange of new ideas and lessons learned. Taken together, the chapters of this book provide a collection of high-quality research works that address broad challenges in both theoretical and applied aspects of intelligent natural language processing. The book presents the state-of-the-art in research on natural language processing, computational linguistics, applied Arabic linguistics and related areas. New trends in natural language processing systems are rapidly emerging – and finding application in various domains including education, travel and tourism, and healthcare, among others. Many issues encountered during the development of these applications can be resolved by incorporating language technology solutions. The topics covered by the book include: Character and Speech Recognition; Morphological, Syntactic, and Semantic Processing; Information Extraction; Information Retrieval and Question Answering; Text Classification and Text Mining; Text Summarization; Sentiment Analysis; Machine Translation Building and Evaluating Linguistic Resources; and Intelligent Language Tutoring Systems.