## Locally Convex Spaces

Author: M. Scott Osborne
Publisher: Springer Science & Business Media
ISBN: 3319020455
Category: Mathematics
Page: 213
View: 4600
For most practicing analysts who use functional analysis, the restriction to Banach spaces seen in most real analysis graduate texts is not enough for their research. This graduate text, while focusing on locally convex topological vector spaces, is intended to cover most of the general theory needed for application to other areas of analysis. Normed vector spaces, Banach spaces, and Hilbert spaces are all examples of classes of locally convex spaces, which is why this is an important topic in functional analysis. While this graduate text focuses on what is needed for applications, it also shows the beauty of the subject and motivates the reader with exercises of varying difficulty. Key topics covered include point set topology, topological vector spaces, the Hahn–Banach theorem, seminorms and Fréchet spaces, uniform boundedness, and dual spaces. The prerequisite for this text is the Banach space theory typically taught in a beginning graduate real analysis course.

## Topological Vector Spaces

Author: H.H. Schaefer,M.P. Wolff,Manfred P. H. Wolff
Publisher: Springer Science & Business Media
ISBN: 9780387987262
Category: Mathematics
Page: 346
View: 4149
Intended as a systematic text on topological vector spaces, this text assumes familiarity with the elements of general topology and linear algebra. Similarly, the elementary facts on Hilbert and Banach spaces are not discussed in detail here, since the book is mainly addressed to those readers who wish to go beyond the introductory level. Each of the chapters is preceded by an introduction and followed by exercises, which in turn are devoted to further results and supplements, in particular, to examples and counter-examples, and hints have been given where appropriate. This second edition has been thoroughly revised and includes a new chapter on C^* and W^* algebras.

## A Primer on Hilbert Space Theory

Linear Spaces, Topological Spaces, Metric Spaces, Normed Spaces, and Topological Groups
Author: Carlo Alabiso,Ittay Weiss
Publisher: Springer
ISBN: 3319037137
Category: Science
Page: 255
View: 7479
This book is an introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, resides in the very high mathematical difficulty of even the simplest physical case. Within an ordinary graduate course in physics there is insufficient time to cover the theory of Hilbert spaces and operators, as well as distribution theory, with sufficient mathematical rigor. Compromises must be found between full rigor and practical use of the instruments. The book is based on the author's lessons on functional analysis for graduate students in physics. It will equip the reader to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. With respect to the original lectures, the mathematical flavor in all subjects has been enriched. Moreover, a brief introduction to topological groups has been added in addition to exercises and solved problems throughout the text. With these improvements, the book can be used in upper undergraduate and lower graduate courses, both in Physics and in Mathematics.

## Maß und Kategorie

Author: J.C. Oxtoby
Publisher: Springer-Verlag
ISBN: 364296074X
Category: Mathematics
Page: 112
View: 1108
Dieses Buch behandelt hauptsächlich zwei Themenkreise: Der Bairesche Kategorie-Satz als Hilfsmittel für Existenzbeweise sowie Die "Dualität" zwischen Maß und Kategorie. Die Kategorie-Methode wird durch viele typische Anwendungen erläutert; die Analogie, die zwischen Maß und Kategorie besteht, wird nach den verschiedensten Richtungen hin genauer untersucht. Hierzu findet der Leser eine kurze Einführung in die Grundlagen der metrischen Topologie; außerdem werden grundlegende Eigenschaften des Lebesgue schen Maßes hergeleitet. Es zeigt sich, daß die Lebesguesche Integrationstheorie für unsere Zwecke nicht erforderlich ist, sondern daß das Riemannsche Integral ausreicht. Weiter werden einige Begriffe aus der allgemeinen Maßtheorie und Topologie eingeführt; dies geschieht jedoch nicht nur der größeren Allgemeinheit wegen. Es erübrigt sich fast zu erwähnen, daß sich die Bezeichnung "Kategorie" stets auf "Bairesche Kategorie" be zieht; sie hat nichts zu tun mit dem in der homologischen Algebra verwendeten Begriff der Kategorie. Beim Leser werden lediglich grundlegende Kenntnisse aus der Analysis und eine gewisse Vertrautheit mit der Mengenlehre vorausgesetzt. Für die hier untersuchten Probleme bietet sich in natürlicher Weise die mengentheoretische Formulierung an. Das vorlie gende Buch ist als Einführung in dieses Gebiet der Analysis gedacht. Man könnte es als Ergänzung zur üblichen Grundvorlesung über reelle Analysis, als Grundlage für ein Se minar oder auch zum selbständigen Studium verwenden. Bei diesem Buch handelt es sich vorwiegend um eine zusammenfassende Darstellung; jedoch finden sich in ihm auch einige Verfeinerungen bekannter Resultate, namentlich Satz 15.6 und Aussage 20.4. Das Literaturverzeichnis erhebt keinen Anspruch auf Vollständigkeit. Häufig werden Werke zitiert, die weitere Literaturangaben enthalten.

## Foundations of Complex Analysis in Non Locally Convex Spaces

Function Theory without Convexity Condition
Author: A. Bayoumi
Publisher: Elsevier
ISBN: 9780080531922
Category: Mathematics
Page: 304
View: 1825
All the existing books in Infinite Dimensional Complex Analysis focus on the problems of locally convex spaces. However, the theory without convexity condition is covered for the first time in this book. This shows that we are really working with a new, important and interesting field. Theory of functions and nonlinear analysis problems are widespread in the mathematical modeling of real world systems in a very broad range of applications. During the past three decades many new results from the author have helped to solve multiextreme problems arising from important situations, non-convex and non linear cases, in function theory. Foundations of Complex Analysis in Non Locally Convex Spaces is a comprehensive book that covers the fundamental theorems in Complex and Functional Analysis and presents much new material. The book includes generalized new forms of: Hahn-Banach Theorem, Multilinear maps, theory of polynomials, Fixed Point Theorems, p-extreme points and applications in Operations Research, Krein-Milman Theorem, Quasi-differential Calculus, Lagrange Mean-Value Theorems, Taylor series, Quasi-holomorphic and Quasi-analytic maps, Quasi-Analytic continuations, Fundamental Theorem of Calculus, Bolzano's Theorem, Mean-Value Theorem for Definite Integral, Bounding and weakly-bounding (limited) sets, Holomorphic Completions, and Levi problem. Each chapter contains illustrative examples to help the student and researcher to enhance his knowledge of theory of functions. The new concept of Quasi-differentiability introduced by the author represents the backbone of the theory of Holomorphy for non-locally convex spaces. In fact it is different but much stronger than the Frechet one. The book is intended not only for Post-Graduate (M.Sc.& Ph.D.) students and researchers in Complex and Functional Analysis, but for all Scientists in various disciplines whom need nonlinear or non-convex analysis and holomorphy methods without convexity conditions to model and solve problems. bull; The book contains new generalized versions of: i) Fundamental Theorem of Calculus, Lagrange Mean-Value Theorem in real and complex cases, Hahn-Banach Theorems, Bolzano Theorem, Krein-Milman Theorem, Mean value Theorem for Definite Integral, and many others. ii) Fixed Point Theorems of Bruower, Schauder and Kakutani's. bull; The book contains some applications in Operations research and non convex analysis as a consequence of the new concept p-Extreme points given by the author. bull; The book contains a complete theory for Taylor Series representations of the different types of holomorphic maps in F-spaces without convexity conditions. bull; The book contains a general new concept of differentiability stronger than the Frechet one. This implies a new Differentiable Calculus called Quasi-differential (or Bayoumi differential) Calculus. It is due to the author's discovery in 1995. bull; The book contains the theory of polynomials and Banach Stienhaus theorem in non convex spaces.

## Locally Convex Spaces

Author: N.A
Publisher: Springer Science & Business Media
ISBN: 3322905594
Category: Technology & Engineering
Page: 550
View: 7351
The present book grew out of several courses which I have taught at the University of Zürich and at the University of Maryland during the past seven years. It is primarily intended to be a systematic text on locally convex spaces at the level of a student who has some familiarity with general topology and basic measure theory. However, since much of the material is of fairly recent origin and partly appears here for the first time in a book, and also since some well-known material has been given a not so well-known treatment, I hope that this book might prove useful even to more advanced readers. And in addition I hope that the selection ofmaterial marks a sufficient set-offfrom the treatments in e.g. N. Bourbaki [4], [5], R.E. Edwards [1], K. Floret-J. Wloka [1], H.G. Garnir-M. De Wilde-J. Schmets [1], AGrothendieck [13], H. Heuser [1], J. Horvath [1], J.L. Kelley-I. Namioka et al. [1], G. Köthe [7], [10], A P. Robertson W. Robertson [1], W. Rudin [2], H.H. Schaefer [1], F. Treves [l], A Wilansky [1]. A few sentences should be said about the organization of the book. It consists of 21 chapters which are grouped into three parts. Each chapter splits into several sections. Chapters, sections, and the statements therein are enumerated in consecutive fashion.

## Complex Analysis in Locally Convex Spaces

Author: S. Dineen
Publisher: Elsevier
ISBN: 9780080871684
Category: Mathematics
Page: 491
View: 3599
Complex Analysis in Locally Convex Spaces

## Topological Vector Spaces

Author: Helmut H. Schaefer
Publisher: Springer Verlag
ISBN: N.A
Category: Mathematics
Page: 294
View: 7651
Intended as a systematic text on topological vector spaces, this text assumes familiarity with the elements of general topology and linear algebra. Similarly, the elementary facts on Hilbert and Banach spaces are not discussed in detail here, since the book is mainly addressed to those readers who wish to go beyond the introductory level. Each of the chapters is preceded by an introduction and followed by exercises, which in turn are devoted to further results and supplements, in particular, to examples and counter-examples, and hints have been given where appropriate.

## A Course in Functional Analysis

Author: John B. Conway
Publisher: Springer Science & Business Media
ISBN: 1475738285
Category: Mathematics
Page: 406
View: 3382
Functional analysis has become a sufficiently large area of mathematics that it is possible to find two research mathematicians, both of whom call themselves functional analysts, who have great difficulty understanding the work of the other. The common thread is the existence of a linear space with a topology or two (or more). Here the paths diverge in the choice of how that topology is defined and in whether to study the geometry of the linear space, or the linear operators on the space, or both. In this book I have tried to follow the common thread rather than any special topic. I have included some topics that a few years ago might have been thought of as specialized but which impress me as interesting and basic. Near the end of this work I gave into my natural temptation and included some operator theory that, though basic for operator theory, might be considered specialized by some functional analysts.

## Modern Methods in Topological Vector Spaces

Author: Albert Wilansky
Publisher: Courier Corporation
ISBN: 0486782247
Category: Mathematics
Page: 320
View: 9447
Geared toward beginning graduate students of mathematics, this text covers Banach space, open mapping and closed graph theorems, local convexity, duality, equicontinuity, operators, inductive limits, and compactness and barrelled spaces. 1978 edition.

## Grundzüge der Mengenlehre

Author: Felix Hausdorff
Publisher: American Mathematical Soc.
ISBN: 9780828400619
Category: Mathematics
Page: 476
View: 5191
This reprint of the original 1914 edition of this famous work contains many topics that had to be omitted from later editions, notably, Symmetric Sets, Principle of Duality, most of the ``Algebra'' of Sets, Partially Ordered Sets, Arbitrary Sets of Complexes, Normal Types, Initial and Final Ordering, Complexes of Real Numbers, General Topological Spaces, Euclidean Spaces, the Special Methods Applicable in the Euclidean Plane, Jordan's Separation Theorem, the Theory of Content and Measure, the Theory of the Lebesgue Integral. The text is in German.

## An Introduction to Banach Space Theory

Author: Robert E. Megginson
Publisher: Springer Science & Business Media
ISBN: 1461206030
Category: Mathematics
Page: 599
View: 2240
Preparing students for further study of both the classical works and current research, this is an accessible text for students who have had a course in real and complex analysis and understand the basic properties of L p spaces. It is sprinkled liberally with examples, historical notes, citations, and original sources, and over 450 exercises provide practice in the use of the results developed in the text through supplementary examples and counterexamples.

## Introductory Theory of Topological Vector SPates

Author: Yau-Chuen Wong
Publisher: CRC Press
ISBN: 9780824787790
Category: Mathematics
Page: 440
View: 7806
This text offers an overview of the basic theories and techniques of functional analysis and its applications. It contains topics such as the fixed point theory starting from Ky Fan's KKM covering and quasi-Schwartz operators. It also includes over 200 exercises to reinforce important concepts.;The author explores three fundamental results on Banach spaces, together with Grothendieck's structure theorem for compact sets in Banach spaces (including new proofs for some standard theorems) and Helley's selection theorem. Vector topologies and vector bornologies are examined in parallel, and their internal and external relationships are studied. This volume also presents recent developments on compact and weakly compact operators and operator ideals; and discusses some applications to the important class of Schwartz spaces.;This text is designed for a two-term course on functional analysis for upper-level undergraduate and graduate students in mathematics, mathematical physics, economics and engineering. It may also be used as a self-study guide by researchers in these disciplines.

## Manuscripta Mathematica

Author: N.A
Publisher: N.A
ISBN: N.A
Category: Mathematics
Page: N.A
View: 1008

## Note Di Matematica

Author: N.A
Publisher: N.A
ISBN: N.A
Category: Mathematics
Page: N.A
View: 9092

## Linear Topological Spaces

Author: John Leroy Kelley,Isaac Namioka
Publisher: Springer
ISBN: 3662419149
Category: Mathematics
Page: 256
View: 8378

## Proceedings of the Royal Irish Academy

Mathematical and physical sciences
Author: N.A
Publisher: N.A
ISBN: N.A
Category: Mathematics
Page: N.A
View: 4108

## Mathematical Proceedings of the Royal Irish Academy

Author: N.A
Publisher: N.A
ISBN: N.A
Category: Mathematics
Page: N.A
View: 4076

## Composition Operators on Function Spaces

Author: R.K. Singh,J.S. Manhas
Publisher: Elsevier
ISBN: 9780080872902
Category: Mathematics
Page: 314
View: 3058