Markov Chains


Author: J. R. Norris
Publisher: Cambridge University Press
ISBN: 9780521633963
Category: Mathematics
Page: 237
View: 7790
DOWNLOAD NOW »
In this rigorous account the author studies both discrete-time and continuous-time chains. A distinguishing feature is an introduction to more advanced topics such as martingales and potentials, in the established context of Markov chains. There are applications to simulation, economics, optimal control, genetics, queues and many other topics, and a careful selection of exercises and examples drawn both from theory and practice. This is an ideal text for seminars on random processes or for those that are more oriented towards applications, for advanced undergraduates or graduate students with some background in basic probability theory.

Wahrscheinlichkeitstheorie


Author: Achim Klenke
Publisher: Springer-Verlag
ISBN: 3642360181
Category: Mathematics
Page: 650
View: 2599
DOWNLOAD NOW »
Seit seinem Erscheinen hat sich das Buch umgehend als Standardwerk für eine umfassende und moderne Einführung in die Wahrscheinlichkeitstheorie und ihre maßtheoretischen Grundlagen etabliert. Themenschwerpunkte sind: Maß- und Integrationstheorie, Grenzwertsätze für Summen von Zufallsvariablen (Gesetze der Großen Zahl, Zentraler Grenzwertsatz, Ergodensätze, Gesetz vom iterierten Logarithmus, Invarianzprinzipien, unbegrenzt teilbare Verteilungen), Martingale, Perkolation, Markovketten und elektrische Netzwerke, Konstruktion stochastischer Prozesse, Poisson'scher Punktprozess, Brown'sche Bewegung, stochastisches Integral und stochastische Differentialgleichungen. Bei der Bearbeitung der Neuauflage wurde viel Wert auf eine noch zugänglichere didaktische Aufbereitung des Textes gelegt, und es wurden viele neue Abbildungen sowie Textergänzungen hinzugefügt.

Introduction to Markov Chains

With Special Emphasis on Rapid Mixing
Author: Ehrhard Behrends
Publisher: Vieweg+Teubner Verlag
ISBN: 3322901572
Category: Mathematics
Page: 234
View: 1336
DOWNLOAD NOW »
Besides the investigation of general chains the book contains chapters which are concerned with eigenvalue techniques, conductance, stopping times, the strong Markov property, couplings, strong uniform times, Markov chains on arbitrary finite groups (including a crash-course in harmonic analysis), random generation and counting, Markov random fields, Gibbs fields, the Metropolis sampler, and simulated annealing. With 170 exercises.

Understanding Markov Chains

Examples and Applications
Author: Nicolas Privault
Publisher: Springer
ISBN: 9811306591
Category: Mathematics
Page: 372
View: 7591
DOWNLOAD NOW »
This book provides an undergraduate-level introduction to discrete and continuous-time Markov chains and their applications, with a particular focus on the first step analysis technique and its applications to average hitting times and ruin probabilities. It also discusses classical topics such as recurrence and transience, stationary and limiting distributions, as well as branching processes. It first examines in detail two important examples (gambling processes and random walks) before presenting the general theory itself in the subsequent chapters. It also provides an introduction to discrete-time martingales and their relation to ruin probabilities and mean exit times, together with a chapter on spatial Poisson processes. The concepts presented are illustrated by examples, 138 exercises and 9 problems with their solutions.

Markov Chains and Mixing Times: Second Edition


Author: David A. Levin,Yuval Peres
Publisher: American Mathematical Soc.
ISBN: 1470429624
Category: Distribution (Probability theory)
Page: 447
View: 8354
DOWNLOAD NOW »
This book is an introduction to the modern theory of Markov chains, whose goal is to determine the rate of convergence to the stationary distribution, as a function of state space size and geometry. This topic has important connections to combinatorics, statistical physics, and theoretical computer science. Many of the techniques presented originate in these disciplines. The central tools for estimating convergence times, including coupling, strong stationary times, and spectral methods, are developed. The authors discuss many examples, including card shuffling and the Ising model, from statistical mechanics, and present the connection of random walks to electrical networks and apply it to estimate hitting and cover times. The first edition has been used in courses in mathematics and computer science departments of numerous universities. The second edition features three new chapters (on monotone chains, the exclusion process, and stationary times) and also includes smaller additions and corrections throughout. Updated notes at the end of each chapter inform the reader of recent research developments.

Probability

Theory and Examples
Author: Rick Durrett
Publisher: Cambridge University Press
ISBN: 113949113X
Category: Mathematics
Page: N.A
View: 7774
DOWNLOAD NOW »
This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.

Lebensversicherungsmathematik


Author: Hans U. Gerber
Publisher: Springer-Verlag
ISBN: 3642713106
Category: Business & Economics
Page: 126
View: 8366
DOWNLOAD NOW »


Statistical Models


Author: A. C. Davison
Publisher: Cambridge University Press
ISBN: 1139437410
Category: Mathematics
Page: N.A
View: 9486
DOWNLOAD NOW »
Models and likelihood are the backbone of modern statistics. This 2003 book gives an integrated development of these topics that blends theory and practice, intended for advanced undergraduate and graduate students, researchers and practitioners. Its breadth is unrivaled, with sections on survival analysis, missing data, Markov chains, Markov random fields, point processes, graphical models, simulation and Markov chain Monte Carlo, estimating functions, asymptotic approximations, local likelihood and spline regressions as well as on more standard topics such as likelihood and linear and generalized linear models. Each chapter contains a wide range of problems and exercises. Practicals in the S language designed to build computing and data analysis skills, and a library of data sets to accompany the book, are available over the Web.

Measure Theory and Filtering

Introduction and Applications
Author: Lakhdar Aggoun,Robert J. Elliott
Publisher: Cambridge University Press
ISBN: 9781139456241
Category: Mathematics
Page: N.A
View: 1750
DOWNLOAD NOW »
This book was published in 2004. The estimation of noisily observed states from a sequence of data has traditionally incorporated ideas from Hilbert spaces and calculus-based probability theory. As conditional expectation is the key concept, the correct setting for filtering theory is that of a probability space. Graduate engineers, mathematicians and those working in quantitative finance wishing to use filtering techniques will find in the first half of this book an accessible introduction to measure theory, stochastic calculus, and stochastic processes, with particular emphasis on martingales and Brownian motion. Exercises are included. The book then provides an excellent users' guide to filtering: basic theory is followed by a thorough treatment of Kalman filtering, including recent results which extend the Kalman filter to provide parameter estimates. These ideas are then applied to problems arising in finance, genetics and population modelling in three separate chapters, making this a comprehensive resource for both practitioners and researchers.

Statistical Analysis of Stochastic Processes in Time


Author: J. K. Lindsey
Publisher: Cambridge University Press
ISBN: 9781139454513
Category: Mathematics
Page: 338
View: 8820
DOWNLOAD NOW »
This book was first published in 2004. Many observed phenomena, from the changing health of a patient to values on the stock market, are characterised by quantities that vary over time: stochastic processes are designed to study them. This book introduces practical methods of applying stochastic processes to an audience knowledgeable only in basic statistics. It covers almost all aspects of the subject and presents the theory in an easily accessible form that is highlighted by application to many examples. These examples arise from dozens of areas, from sociology through medicine to engineering. Complementing these are exercise sets making the book suited for introductory courses in stochastic processes. Software (available from www.cambridge.org) is provided for the freely available R system for the reader to apply to all the models presented.

Understanding Probability


Author: Henk Tijms
Publisher: Cambridge University Press
ISBN: 110765856X
Category: Mathematics
Page: 562
View: 1476
DOWNLOAD NOW »
Using everyday examples to demystify probability, this classic is now in its third edition with new chapters, exercises and examples.

Kalman-Bucy-Filter

Deterministische Beobachtung und stochastische Filterung
Author: Karl Brammer,Gerhard Siffling
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3486785524
Category: Science
Page: 232
View: 6081
DOWNLOAD NOW »
Das Buch führt den Leser auf elementarem Wege in die Wahrscheinlichkeitsrechnung und in die Theorie der Zufallsprozesse ein, wobei keinerlei Vorkenntnisse auf diesem Gebiet vorausgesetzt werden. Schließlich wird gezeigt, wie sich die Eigenschaften eines Zufallsprozesses bei der Übertragung durch ein lineares System verändern und wie diese veränderten Eigenschaften berechnet werden können.

Theorie der Wärme


Author: Richard Becker
Publisher: Springer-Verlag
ISBN: 3662249278
Category: Science
Page: 320
View: 8383
DOWNLOAD NOW »
Schon seit langem wurde RICHARD BECKER von Freunden, Schülern und Kollegen bestürmt, seine "Theorie der Wärme" zu schreiben. Gerade diesem Gebiet hatte er seine Liebe und Aufmerksamkeit zugewandt. Das hat wohl daran gelegen, daß hier die Verflechtung des experimentellen Tatbestandes mit theoretischen Gedankengängen besonders innig ist und man daher den gesunden physikalischen Menschenverstand in besonderem Maße benötigt. Diese Art Physik lag ihm sehr und hier fühlte er sich zu Hause. Seine Vor lesungen über Wärme waren berühmt, und so entstand der berechtigte Wunsch, seine Art der Darstellung auch schwarz auf weiß zu besitzen. Nach langem Zureden hat RICHARD BECKER sich endlich vor etwa 5 Jah ren dazu entschlossen. Der Grundriß war bald aufgestellt, aber die Bearbei tung im einzelnen kostete viel Zeit und Mühe. Es war weniger das Auf schreiben und die Formulierung der Tatbestände, die Mühe machte. Das war ofl: genug eine Kleinigkeit. Meist aber gefiel ihm dann die eigene Darstellung nicht mehr. Es war ihm nicht klar, nicht anschaulich, nicht pointiert genug. Und dann wurde umgearbeitet, neu überlegt, zur Probe an der Tafel erzählt, so lange, bis es ihm wieder gefiel. Jeder Gedanke in diesem Buch ist so nach den verschiedensten Richtungen hin neu überlegt, verworfen und wieder aufgenommen worden. Auch als die erste Korrektur schon im Druck vorlag, gefiel ihm wieder manches nicht mehr, aber da war es zu spät. So reifl:e das Werk unter manch heimlichem Seufzer seiner Mitarbeiter heran und war Ende 1954 druckfertig.

Grundbegriffe der Wahrscheinlichkeitsrechnung


Author: A. Kolomogoroff
Publisher: Springer-Verlag
ISBN: 3642498884
Category: Mathematics
Page: 62
View: 2029
DOWNLOAD NOW »
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Internationale mathematische Nachrichten


Author: N.A
Publisher: N.A
ISBN: N.A
Category: Mathematics
Page: N.A
View: 9565
DOWNLOAD NOW »
Issues for Dec. 1952- include section: Nachrichten der Österreichischen Mathematischen Gesellschaft.

Statistical Pronunciation Modeling for Non-Native Speech Processing


Author: Rainer E. Gruhn,Wolfgang Minker,Satoshi Nakamura
Publisher: Springer Science & Business Media
ISBN: 9783642195860
Category: Technology & Engineering
Page: 114
View: 7425
DOWNLOAD NOW »
In this work, the authors present a fully statistical approach to model non--native speakers' pronunciation. Second-language speakers pronounce words in multiple different ways compared to the native speakers. Those deviations, may it be phoneme substitutions, deletions or insertions, can be modelled automatically with the new method presented here. The methods is based on a discrete hidden Markov model as a word pronunciation model, initialized on a standard pronunciation dictionary. The implementation and functionality of the methodology has been proven and verified with a test set of non-native English in the regarding accent. The book is written for researchers with a professional interest in phonetics and automatic speech and speaker recognition.

Quantitative Methoden in den Wirtschaftswissenschaften

Hans Paul Künzi zum 65. Geburtstag
Author: Peter Kall,Juerg Kohlas,Werner Popp,Carl-August Zehnder
Publisher: Springer-Verlag
ISBN: 3642743064
Category: Business & Economics
Page: 240
View: 2303
DOWNLOAD NOW »
Anläßlich des 65. Geburtstages von Hans Paul Künzi haben sich Weggefährten, Mitarbeiter und Schüler aus den Jahren seines Wirkens als Hochschullehrer zusammengetan, um wenigstens punktuell aufzu zeigen, wie und wohin in den letzten zwei Jahrzehnten verschiedene theoretische und empirische Entwicklungen verlaufen sind, die der Jubilar zumindest in der Schweiz und zu einem guten Teil auch darüber hinaus mitaufgebaut und in den Anfängen beeinflußt hat. Zu diesem Vorhaben fanden die Herausgeber vielseitige Unterstützung. Zunächst von den beteiligten Autoren, die mit spontanen Zusagen und in vorbildlicher Weise ihre Beiträge termingerecht fertiggestellt haben. Darüber hinaus hat ein größerer Kreis von Persönlichkeiten mit Rat und Tat die Entstehung der Schrift gefördert, wobei besonders auch auf ein großes Entgegenkommen des Springer-Verlages zu verweisen ist. Allen möchten wir für die Hilfe aufrichtig danken. Angesichts der Tatsache, daß Hans Paul Künzi bereits vor fast zwei Jahrzehnten seine wissenschaftliche Laufbahn zugunsten einer anderen Verpflichtung aufgegeben hat, liegt die Frage nahe, warum wir -nach wie vor der akademischen Welt verbunden -heute noch von der Persönlichkeit Künzi beeindruckt sind. Dazu sei kurz auf sein damaliges Wirken als Professor an der Universität Zürich und an der ETH Zürich zurückgeblendet.

Nonlinear Markov Processes and Kinetic Equations


Author: Vassili N. Kolokoltsov
Publisher: Cambridge University Press
ISBN: 1139489739
Category: Mathematics
Page: N.A
View: 4463
DOWNLOAD NOW »
A nonlinear Markov evolution is a dynamical system generated by a measure-valued ordinary differential equation with the specific feature of preserving positivity. This feature distinguishes it from general vector-valued differential equations and yields a natural link with probability, both in interpreting results and in the tools of analysis. This brilliant book, the first devoted to the area, develops this interplay between probability and analysis. After systematically presenting both analytic and probabilistic techniques, the author uses probability to obtain deeper insight into nonlinear dynamics, and analysis to tackle difficult problems in the description of random and chaotic behavior. The book addresses the most fundamental questions in the theory of nonlinear Markov processes: existence, uniqueness, constructions, approximation schemes, regularity, law of large numbers and probabilistic interpretations. Its careful exposition makes the book accessible to researchers and graduate students in stochastic and functional analysis with applications to mathematical physics and systems biology.

Mathematical Foundations of Computer Science 2004

29th International Symposium, MFCS 2004, Prague, Czech Republic, August 22-27, 2004, Proceedings
Author: Jirí Fiala,Václav Koubek,Jan Kratochvíl
Publisher: Springer
ISBN: N.A
Category: Computers
Page: 902
View: 3784
DOWNLOAD NOW »
This book constitutes the refereed proceedings of the 29th International Symposium on Mathematical Foundations of Computer Science, MFCS 2004, held in Prague, Czech Republic in August 2004. The 60 revised full papers presented together with full papers or abstracts of 10 invited talks were carefully reviewed and selected from 167 submissions. The papers are organised in topical sections on graph algorithms, approximation, graphs and complexity, circuits, general complexity, automata, parameterized and kolmogrov complexity, semantics, scheduling, algebraic theory of languages, games, languages, geometry, languages and complexity, quantum computing, and XML.