Partial Differential Equations

An Introduction to Theory and Applications
Author: Michael Shearer,Rachel Levy
Publisher: Princeton University Press
ISBN: 140086660X
Category: Mathematics
Page: 288
View: 2193
DOWNLOAD NOW »
This textbook provides beginning graduate students and advanced undergraduates with an accessible introduction to the rich subject of partial differential equations (PDEs). It presents a rigorous and clear explanation of the more elementary theoretical aspects of PDEs, while also drawing connections to deeper analysis and applications. The book serves as a needed bridge between basic undergraduate texts and more advanced books that require a significant background in functional analysis. Topics include first order equations and the method of characteristics, second order linear equations, wave and heat equations, Laplace and Poisson equations, and separation of variables. The book also covers fundamental solutions, Green's functions and distributions, beginning functional analysis applied to elliptic PDEs, traveling wave solutions of selected parabolic PDEs, and scalar conservation laws and systems of hyperbolic PDEs. Provides an accessible yet rigorous introduction to partial differential equations Draws connections to advanced topics in analysis Covers applications to continuum mechanics An electronic solutions manual is available only to professors An online illustration package is available to professors

An Introduction to Partial Differential Equations


Author: Yehuda Pinchover,Jacob Rubinstein
Publisher: Cambridge University Press
ISBN: 9780521848862
Category: Mathematics
Page: 371
View: 4619
DOWNLOAD NOW »
A complete introduction to partial differential equations. A textbook aimed at students of mathematics, physics and engineering.

Partielle Differentialgleichungen

Eine Einführung
Author: Walter A. Strauss
Publisher: Springer-Verlag
ISBN: 366312486X
Category: Mathematics
Page: 458
View: 5451
DOWNLOAD NOW »
Dieses Buch ist eine umfassende Einführung in die klassischen Lösungsmethoden partieller Differentialgleichungen. Es wendet sich an Leser mit Kenntnissen aus einem viersemestrigen Grundstudium der Mathematik (und Physik) und legt seinen Schwerpunkt auf die explizite Darstellung der Lösungen. Es ist deshalb besonders auch für Anwender (Physiker, Ingenieure) sowie für Nichtspezialisten, die die Methoden der mathematischen Physik kennenlernen wollen, interessant. Durch die große Anzahl von Beispielen und Übungsaufgaben eignet es sich gut zum Gebrauch neben Vorlesungen sowie zum Selbststudium.

Partial Differential Equations

An Introduction
Author: Walter A. Strauss
Publisher: Wiley
ISBN: 0470054565
Category: Mathematics
Page: 464
View: 3529
DOWNLOAD NOW »
Partial Differential Equations presents a balanced and comprehensive introduction to the concepts and techniques required to solve problems containing unknown functions of multiple variables. While focusing on the three most classical partial differential equations (PDEs)—the wave, heat, and Laplace equations—this detailed text also presents a broad practical perspective that merges mathematical concepts with real-world application in diverse areas including molecular structure, photon and electron interactions, radiation of electromagnetic waves, vibrations of a solid, and many more. Rigorous pedagogical tools aid in student comprehension; advanced topics are introduced frequently, with minimal technical jargon, and a wealth of exercises reinforce vital skills and invite additional self-study. Topics are presented in a logical progression, with major concepts such as wave propagation, heat and diffusion, electrostatics, and quantum mechanics placed in contexts familiar to students of various fields in science and engineering. By understanding the properties and applications of PDEs, students will be equipped to better analyze and interpret central processes of the natural world.

Theory and Applications of Partial Differential Equations


Author: Piero Bassanini,Alan R. Elcrat
Publisher: Springer Science & Business Media
ISBN: 1489918752
Category: Mathematics
Page: 444
View: 1159
DOWNLOAD NOW »
This book is a product of the experience of the authors in teaching partial differential equations to students of mathematics, physics, and engineering over a period of 20 years. Our goal in writing it has been to introduce the subject with precise and rigorous analysis on the one hand, and interesting and significant applications on the other. The starting level of the book is at the first-year graduate level in a U.S. university. Previous experience with partial differential equations is not required, but the use of classical analysis to find solutions of specific problems is not emphasized. From that perspective our treatment is decidedly theoretical. We have avoided abstraction and full generality in many situations, however. Our plan has been to introduce fundamental ideas in relatively simple situations and to show their impact on relevant applications. The student is then, we feel, well prepared to fight through more specialized treatises. There are parts of the exposition that require Lebesgue integration, distributions and Fourier transforms, and Sobolev spaces. We have included a long appendix, Chapter 8, giving precise statements of all results used. This may be thought of as an introduction to these topics. The reader who is not familiar with these subjects may refer to parts of Chapter 8 as needed or become somewhat familiar with them as prerequisite and treat Chapter 8 as Chapter O.

An Introduction to Partial Differential Equations with MATLAB, Second Edition


Author: Matthew P. Coleman
Publisher: CRC Press
ISBN: 1439898472
Category: Mathematics
Page: 683
View: 9548
DOWNLOAD NOW »
An Introduction to Partial Differential Equations with MATLAB®, Second Edition illustrates the usefulness of PDEs through numerous applications and helps students appreciate the beauty of the underlying mathematics. Updated throughout, this second edition of a bestseller shows students how PDEs can model diverse problems, including the flow of heat, the propagation of sound waves, the spread of algae along the ocean’s surface, the fluctuation in the price of a stock option, and the quantum mechanical behavior of a hydrogen atom. Suitable for a two-semester introduction to PDEs and Fourier series for mathematics, physics, and engineering students, the text teaches the equations based on method of solution. It provides both physical and mathematical motivation as much as possible. The author treats problems in one spatial dimension before dealing with those in higher dimensions. He covers PDEs on bounded domains and then on unbounded domains, introducing students to Fourier series early on in the text. Each chapter’s prelude explains what and why material is to be covered and considers the material in a historical setting. The text also contains many exercises, including standard ones and graphical problems using MATLAB. While the book can be used without MATLAB, instructors and students are encouraged to take advantage of MATLAB’s excellent graphics capabilities. The MATLAB code used to generate the tables and figures is available in an appendix and on the author’s website.

Differential Equations and Their Applications

An Introduction to Applied Mathematics
Author: Martin Braun
Publisher: Springer Science & Business Media
ISBN: 9780387978949
Category: Mathematics
Page: 578
View: 2082
DOWNLOAD NOW »
Used in undergraduate classrooms across the USA, this is a clearly written, rigorous introduction to differential equations and their applications. Fully understandable to students who have had one year of calculus, this book distinguishes itself from other differential equations texts through its engaging application of the subject matter to interesting scenarios. This fourth edition incorporates earlier introductory material on bifurcation theory and adds a new chapter on Sturm-Liouville boundary value problems. Computer programs in C, Pascal, and Fortran are presented throughout the text to show readers how to apply differential equations towards quantitative problems.

Introduction to Partial Differential Equations with Applications


Author: E. C. Zachmanoglou,Dale W. Thoe
Publisher: Courier Corporation
ISBN: 048613217X
Category: Mathematics
Page: 432
View: 2938
DOWNLOAD NOW »
This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.

An Introduction to the Mathematical Theory of Waves


Author: Roger Knobel
Publisher: American Mathematical Soc.
ISBN: 0821820397
Category: Mathematics
Page: 196
View: 2495
DOWNLOAD NOW »
Linear and nonlinear waves are a central part of the theory of PDEs. This book begins with a description of one-dimensional waves and their visualization through computer-aided techniques. Next, traveling waves are covered, such as solitary waves for the Klein-Gordon and KdV equations. Finally, the author gives a lucid discussion of waves arising from conservation laws, including shock and rarefaction waves. As an application, interesting models of traffic flow are used to illustrate conservation laws and wave phenomena. This book is based on a course given by the author at the IAS/Park City Mathematics Institute. It is suitable for independent study by undergraduate students in mathematics, engineering, and science programs.

Introduction to Numerical Ordinary and Partial Differential Equations Using MATLAB


Author: Alexander Stanoyevitch
Publisher: John Wiley & Sons
ISBN: 1118031504
Category: Mathematics
Page: 832
View: 3406
DOWNLOAD NOW »


An Introduction to Nonlinear Partial Differential Equations


Author: J. David Logan
Publisher: John Wiley & Sons
ISBN: 0470225955
Category: Mathematics
Page: 397
View: 4742
DOWNLOAD NOW »
An Introduction to Nonlinear Partial Differential Equations is a textbook on nonlinear partial differential equations. It is technique oriented with an emphasis on applications and is designed to build a foundation for studying advanced treatises in the field. The Second Edition features an updated bibliography as well as an increase in the number of exercises. All software references have been updated with the latest version of [email protected], the corresponding graphics have also been updated using [email protected] An increased focus on hydrogeology...

Vector Integration and Stochastic Integration in Banach Spaces


Author: Nicolae Dinculeanu
Publisher: John Wiley & Sons
ISBN: 1118031261
Category: Mathematics
Page: 448
View: 3137
DOWNLOAD NOW »
A breakthrough approach to the theory and applications of stochastic integration The theory of stochastic integration has become an intensely studied topic in recent years, owing to its extraordinarily successful application to financial mathematics, stochastic differential equations, and more. This book features a new measure theoretic approach to stochastic integration, opening up the field for researchers in measure and integration theory, functional analysis, probability theory, and stochastic processes. World-famous expert on vector and stochastic integration in Banach spaces Nicolae Dinculeanu compiles and consolidates information from disparate journal articles-including his own results-presenting a comprehensive, up-to-date treatment of the theory in two major parts. He first develops a general integration theory, discussing vector integration with respect to measures with finite semivariation, then applies the theory to stochastic integration in Banach spaces. Vector Integration and Stochastic Integration in Banach Spaces goes far beyond the typical treatment of the scalar case given in other books on the subject. Along with such applications of the vector integration as the Reisz representation theorem and the Stieltjes integral for functions of one or two variables with finite semivariation, it explores the emergence of new classes of summable processes that make applications possible, including square integrable martingales in Hilbert spaces and processes with integrable variation or integrable semivariation in Banach spaces. Numerous references to existing results supplement this exciting, breakthrough work.

Introduction to Partial Differential Equations


Author: G. B. Folland
Publisher: Princeton University Press
ISBN: 9780691043616
Category: Mathematics
Page: 324
View: 3281
DOWNLOAD NOW »
The aim of this text is to aquaint the student with the fundamental classical results of partial differential equations and to guide them into some of the modern theory, enabling them to read more advanced works on the subject

Solutions Manual to Accompany Beginning Partial Differential Equations


Author: Peter V. O'Neil
Publisher: John Wiley & Sons
ISBN: 1118630092
Category: Mathematics
Page: 128
View: 8901
DOWNLOAD NOW »
Solutions Manual to Accompany Beginning Partial Differential Equations, 3rd Edition Featuring a challenging, yet accessible, introduction to partial differential equations, Beginning Partial Differential Equations provides a solid introduction to partial differential equations, particularly methods of solution based on characteristics, separation of variables, as well as Fourier series, integrals, and transforms. Thoroughly updated with novel applications, such as Poe's pendulum and Kepler's problem in astronomy, this third edition is updated to include the latest version of Maples, which is integrated throughout the text. New topical coverage includes novel applications, such as Poe's pendulum and Kepler's problem in astronomy.

An Introduction to Nonlinear Analysis: Applications


Author: Zdzislaw Denkowski,Stanisław Migórski,Nikolaos Socrates Papageorgiou
Publisher: Springer Science & Business Media
ISBN: 9780306474569
Category: Mathematics
Page: 823
View: 4966
DOWNLOAD NOW »
This book offers an exposition of the main applications of Nonlinear Analysis, beginning with a chapter on Nonlinear Operators and Fixed Points, a connecting point and bridge from Nonlinear Analysis theory to its applications. The topics covered include applications to ordinary and partial differential equations, optimization, optimal control, calculus of variations and mathematical economics. The presentation is supplemented with the inclusion of many exercises and their solutions.

Bifurcation Theory

An Introduction with Applications to Partial Differential Equations
Author: Hansjörg Kielhöfer
Publisher: Springer Science & Business Media
ISBN: 1461405025
Category: Mathematics
Page: 400
View: 2080
DOWNLOAD NOW »
In the past three decades, bifurcation theory has matured into a well-established and vibrant branch of mathematics. This book gives a unified presentation in an abstract setting of the main theorems in bifurcation theory, as well as more recent and lesser known results. It covers both the local and global theory of one-parameter bifurcations for operators acting in infinite-dimensional Banach spaces, and shows how to apply the theory to problems involving partial differential equations. In addition to existence, qualitative properties such as stability and nodal structure of bifurcating solutions are treated in depth. This volume will serve as an important reference for mathematicians, physicists, and theoretically-inclined engineers working in bifurcation theory and its applications to partial differential equations. The second edition is substantially and formally revised and new material is added. Among this is bifurcation with a two-dimensional kernel with applications, the buckling of the Euler rod, the appearance of Taylor vortices, the singular limit process of the Cahn-Hilliard model, and an application of this method to more complicated nonconvex variational problems.

Fractional Differential Equations

An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
Author: Igor Podlubny
Publisher: Elsevier
ISBN: 9780080531984
Category: Mathematics
Page: 340
View: 6718
DOWNLOAD NOW »
This book is a landmark title in the continuous move from integer to non-integer in mathematics: from integer numbers to real numbers, from factorials to the gamma function, from integer-order models to models of an arbitrary order. For historical reasons, the word 'fractional' is used instead of the word 'arbitrary'. This book is written for readers who are new to the fields of fractional derivatives and fractional-order mathematical models, and feel that they need them for developing more adequate mathematical models. In this book, not only applied scientists, but also pure mathematicians will find fresh motivation for developing new methods and approaches in their fields of research. A reader will find in this book everything necessary for the initial study and immediate application of fractional derivatives fractional differential equations, including several necessary special functions, basic theory of fractional differentiation, uniqueness and existence theorems, analytical numerical methods of solution of fractional differential equations, and many inspiring examples of applications. A unique survey of many applications of fractional calculus Presents basic theory Includes a unified presentation of selected classical results, which are important for applications Provides many examples Contains a separate chapter of fractional order control systems, which opens new perspectives in control theory The first systematic consideration of Caputo's fractional derivative in comparison with other selected approaches Includes tables of fractional derivatives, which can be used for evaluation of all considered types of fractional derivatives

An Introduction to Algebraic Structures


Author: Joseph Landin
Publisher: Courier Corporation
ISBN: 9780486659404
Category: Mathematics
Page: 247
View: 8985
DOWNLOAD NOW »
As the author notes in the preface, "The purpose of this book is to acquaint a broad spectrum of students with what is today known as 'abstract algebra.'" Written for a one-semester course, this self-contained text includes numerous examples designed to base the definitions and theorems on experience, to illustrate the theory with concrete examples in familiar contexts, and to give the student extensive computational practice.The first three chapters progress in a relatively leisurely fashion and include abundant detail to make them as comprehensible as possible. Chapter One provides a short course in sets and numbers for students lacking those prerequisites, rendering the book largely self-contained. While Chapters Four and Five are more challenging, they are well within the reach of the serious student.The exercises have been carefully chosen for maximum usefulness. Some are formal and manipulative, illustrating the theory and helping to develop computational skills. Others constitute an integral part of the theory, by asking the student to supply proofs or parts of proofs omitted from the text. Still others stretch mathematical imaginations by calling for both conjectures and proofs.Taken together, text and exercises comprise an excellent introduction to the power and elegance of abstract algebra. Now available in this inexpensive edition, the book is accessible to a wide range of students, who will find it an exceptionally valuable resource. Unabridged, corrected Dover (1989) republication of the edition published by Allyn and Bacon, Boston, 1969.

Real Analysis with an Introduction to Wavelets and Applications


Author: Don Hong,Jianzhong Wang,Robert Gardner
Publisher: Elsevier
ISBN: 9780080540313
Category: Mathematics
Page: 392
View: 6234
DOWNLOAD NOW »
Real Analysis with an Introduction to Wavelets and Applications is an in-depth look at real analysis and its applications, including an introduction to wavelet analysis, a popular topic in "applied real analysis". This text makes a very natural connection between the classic pure analysis and the applied topics, including measure theory, Lebesgue Integral, harmonic analysis and wavelet theory with many associated applications. The text is relatively elementary at the start, but the level of difficulty steadily increases The book contains many clear, detailed examples, case studies and exercises Many real world applications relating to measure theory and pure analysis Introduction to wavelet analysis

An Introduction To Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Variations in L∞


Author: Nikos Katzourakis
Publisher: Springer
ISBN: 3319128299
Category: Mathematics
Page: 123
View: 5055
DOWNLOAD NOW »
The purpose of this book is to give a quick and elementary, yet rigorous, presentation of the rudiments of the so-called theory of Viscosity Solutions which applies to fully nonlinear 1st and 2nd order Partial Differential Equations (PDE). For such equations, particularly for 2nd order ones, solutions generally are non-smooth and standard approaches in order to define a "weak solution" do not apply: classical, strong almost everywhere, weak, measure-valued and distributional solutions either do not exist or may not even be defined. The main reason for the latter failure is that, the standard idea of using "integration-by-parts" in order to pass derivatives to smooth test functions by duality, is not available for non-divergence structure PDE.