Probability and Stochastics


Author: Erhan Çınlar
Publisher: Springer Science & Business Media
ISBN: 9780387878591
Category: Mathematics
Page: 558
View: 8865
DOWNLOAD NOW »
This text is an introduction to the modern theory and applications of probability and stochastics. The style and coverage is geared towards the theory of stochastic processes, but with some attention to the applications. In many instances the gist of the problem is introduced in practical, everyday language and then is made precise in mathematical form. The first four chapters are on probability theory: measure and integration, probability spaces, conditional expectations, and the classical limit theorems. There follows chapters on martingales, Poisson random measures, Levy Processes, Brownian motion, and Markov Processes. Special attention is paid to Poisson random measures and their roles in regulating the excursions of Brownian motion and the jumps of Levy and Markov processes. Each chapter has a large number of varied examples and exercises. The book is based on the author’s lecture notes in courses offered over the years at Princeton University. These courses attracted graduate students from engineering, economics, physics, computer sciences, and mathematics. Erhan Cinlar has received many awards for excellence in teaching, including the President’s Award for Distinguished Teaching at Princeton University. His research interests include theories of Markov processes, point processes, stochastic calculus, and stochastic flows. The book is full of insights and observations that only a lifetime researcher in probability can have, all told in a lucid yet precise style.

Mathematische Statistik


Author: Bartel L. van der Waerden
Publisher: Springer-Verlag
ISBN: 3642649742
Category: Mathematics
Page: 360
View: 7889
DOWNLOAD NOW »


Elementare Wahrscheinlichkeitstheorie und stochastische Prozesse


Author: Kai L. Chung
Publisher: Springer-Verlag
ISBN: 3642670334
Category: Mathematics
Page: 346
View: 6648
DOWNLOAD NOW »
Aus den Besprechungen: "Unter den zahlreichen Einführungen in die Wahrscheinlichkeitsrechnung bildet dieses Buch eine erfreuliche Ausnahme. Der Stil einer lebendigen Vorlesung ist über Niederschrift und Übersetzung hinweg erhalten geblieben. In jedes Kapitel wird sehr anschaulich eingeführt. Sinn und Nützlichkeit der mathematischen Formulierungen werden den Lesern nahegebracht. Die wichtigsten Zusammenhänge sind als mathematische Sätze klar formuliert." #FREQUENZ#1

Wahrscheinlichkeitstheorie und Stochastische Prozesse


Author: Michael Mürmann
Publisher: Springer-Verlag
ISBN: 364238160X
Category: Mathematics
Page: 428
View: 9706
DOWNLOAD NOW »
Dieses Lehrbuch beschäftigt sich mit den zentralen Gebieten einer maßtheoretisch orientierten Wahrscheinlichkeitstheorie im Umfang einer zweisemestrigen Vorlesung. Nach den Grundlagen werden Grenzwertsätze und schwache Konvergenz behandelt. Es folgt die Darstellung und Betrachtung der stochastischen Abhängigkeit durch die bedingte Erwartung, die mit der Radon-Nikodym-Ableitung realisiert wird. Sie wird angewandt auf die Theorie der stochastischen Prozesse, die nach der allgemeinen Konstruktion aus der Untersuchung von Martingalen und Markov-Prozessen besteht. Neu in einem Lehrbuch über allgemeine Wahrscheinlichkeitstheorie ist eine Einführung in die stochastische Analysis von Semimartingalen auf der Grundlage einer geeigneten Stetigkeitsbedingung mit Anwendungen auf die Theorie der Finanzmärkte. Das Buch enthält zahlreiche Übungen, teilweise mit Lösungen. Neben der Theorie vertiefen Anmerkungen, besonders zu mathematischen Modellen für Phänomene der Realität, das Verständnis.​

Probabilistic Theory of Mean Field Games with Applications I

Mean Field FBSDEs, Control, and Games
Author: René Carmona,François Delarue
Publisher: Springer
ISBN: 3319589202
Category: Mathematics
Page: 714
View: 5906
DOWNLOAD NOW »
This two-volume book offers a comprehensive treatment of the probabilistic approach to mean field game models and their applications. The book is self-contained in nature and includes original material and applications with explicit examples throughout, including numerical solutions. Volume I of the book is entirely devoted to the theory of mean field games without a common noise. The first half of the volume provides a self-contained introduction to mean field games, starting from concrete illustrations of games with a finite number of players, and ending with ready-for-use solvability results. Readers are provided with the tools necessary for the solution of forward-backward stochastic differential equations of the McKean-Vlasov type at the core of the probabilistic approach. The second half of this volume focuses on the main principles of analysis on the Wasserstein space. It includes Lions' approach to the Wasserstein differential calculus, and the applications of its results to the analysis of stochastic mean field control problems. Together, both Volume I and Volume II will greatly benefit mathematical graduate students and researchers interested in mean field games. The authors provide a detailed road map through the book allowing different access points for different readers and building up the level of technical detail. The accessible approach and overview will allow interested researchers in the applied sciences to obtain a clear overview of the state of the art in mean field games.

Probabilistic Theory of Mean Field Games with Applications II

Mean Field Games with Common Noise and Master Equations
Author: René Carmona,François Delarue
Publisher: Springer
ISBN: 3319564366
Category: Mathematics
Page: 700
View: 8871
DOWNLOAD NOW »
This two-volume book offers a comprehensive treatment of the probabilistic approach to mean field game models and their applications. The book is self-contained in nature and includes original material and applications with explicit examples throughout, including numerical solutions. Volume II tackles the analysis of mean field games in which the players are affected by a common source of noise. The first part of the volume introduces and studies the concepts of weak and strong equilibria, and establishes general solvability results. The second part is devoted to the study of the master equation, a partial differential equation satisfied by the value function of the game over the space of probability measures. Existence of viscosity and classical solutions are proven and used to study asymptotics of games with finitely many players. Together, both Volume I and Volume II will greatly benefit mathematical graduate students and researchers interested in mean field games. The authors provide a detailed road map through the book allowing different access points for different readers and building up the level of technical detail. The accessible approach and overview will allow interested researchers in the applied sciences to obtain a clear overview of the state of the art in mean field games.

Probability


Author: A.N. Shiryaev
Publisher: Springer Science & Business Media
ISBN: 1489900187
Category: Mathematics
Page: 580
View: 1143
DOWNLOAD NOW »
This textbook is based on a three-semester course of lectures given by the author in recent years in the Mechanics-Mathematics Faculty of Moscow State University and issued, in part, in mimeographed form under the title Probability, Statistics, Stochastic Processes, I, II by the Moscow State University Press. We follow tradition by devoting the first part of the course (roughly one semester) to the elementary theory of probability (Chapter I). This begins with the construction of probabilistic models with finitely many outcomes and introduces such fundamental probabilistic concepts as sample spaces, events, probability, independence, random variables, expectation, corre lation, conditional probabilities, and so on. Many probabilistic and statistical regularities are effectively illustrated even by the simplest random walk generated by Bernoulli trials. In this connection we study both classical results (law of large numbers, local and integral De Moivre and Laplace theorems) and more modern results (for example, the arc sine law). The first chapter concludes with a discussion of dependent random vari ables generated by martingales and by Markov chains.

Wahrscheinlichkeitsrechnung und Statistik


Author: Robert Hafner
Publisher: Springer-Verlag
ISBN: 3709169445
Category: Mathematics
Page: 512
View: 3150
DOWNLOAD NOW »
Das Buch ist eine Einführung in die Wahrscheinlichkeitsrechnung und mathematische Statistik auf mittlerem mathematischen Niveau. Die Pädagogik der Darstellung unterscheidet sich in wesentlichen Teilen – Einführung der Modelle für unabhängige und abhängige Experimente, Darstellung des Suffizienzbegriffes, Ausführung des Zusammenhanges zwischen Testtheorie und Theorie der Bereichschätzung, allgemeine Diskussion der Modellentwicklung – erheblich von der anderer vergleichbarer Lehrbücher. Die Darstellung ist, soweit auf diesem Niveau möglich, mathematisch exakt, verzichtet aber bewußt und ebenfalls im Gegensatz zu vergleichbaren Texten auf die Erörterung von Meßbarkeitsfragen. Der Leser wird dadurch erheblich entlastet, ohne daß wesentliche Substanz verlorengeht. Das Buch will allen, die an der Anwendung der Statistik auf solider Grundlage interessiert sind, eine Einführung bieten, und richtet sich an Studierende und Dozenten aller Studienrichtungen, für die mathematische Statistik ein Werkzeug ist.

Brownian Motion and Stochastic Calculus


Author: Ioannis Karatzas,Steven Shreve
Publisher: Springer
ISBN: 1461209498
Category: Mathematics
Page: 470
View: 8662
DOWNLOAD NOW »
A graduate-course text, written for readers familiar with measure-theoretic probability and discrete-time processes, wishing to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed, illustrated by results concerning representations of martingales and change of measure on Wiener space, which in turn permit a presentation of recent advances in financial economics. The book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The whole is backed by a large number of problems and exercises.

Probability Theory II


Author: M. Loeve
Publisher: Springer Science & Business Media
ISBN: 9780387902623
Category: Mathematics
Page: 416
View: 3701
DOWNLOAD NOW »
This book is intended as a text for graduate students and as a reference for workers in probability and statistics. The prerequisite is honest calculus. The material covered in Parts Two to Five inclusive requires about three to four semesters of graduate study. The introductory part may serve as a text for an undergraduate course in elementary probability theory. Numerous historical marks about results, methods, and the evolution of various fields are an intrinsic part of the text. About a third of the second volume is devoted to conditioning and properties of sequences of various types of dependence. The other two thirds are devoted to random functions; the last Part on Elements of random analysis is more sophisticated.

Probability on Algebraic and Geometric Structures


Author: Gregory Budzban,Harry Randolph Hughes,Henri Schurz
Publisher: American Mathematical Soc.
ISBN: 1470419459
Category: Combinatorial geometry
Page: 221
View: 9403
DOWNLOAD NOW »
This volume contains the proceedings of the International Research Conference “Probability on Algebraic and Geometric Structures”, held from June 5–7, 2014, at Southern Illinois University, Carbondale, IL, celebrating the careers of Philip Feinsilver, Salah-Eldin A. Mohammed, and Arunava Mukherjea. These proceedings include survey papers and new research on a variety of topics such as probability measures and the behavior of stochastic processes on groups, semigroups, and Clifford algebras; algebraic methods for analyzing Markov chains and products of random matrices; stochastic integrals and stochastic ordinary, partial, and functional differential equations.

From Elementary Probability to Stochastic Differential Equations with MAPLE®


Author: Sasha Cyganowski,Peter Kloeden,Jerzy Ombach
Publisher: Springer Science & Business Media
ISBN: 3642561446
Category: Mathematics
Page: 310
View: 5441
DOWNLOAD NOW »
This is an introduction to probabilistic and statistical concepts necessary to understand the basic ideas and methods of stochastic differential equations. Based on measure theory, which is introduced as smoothly as possible, it provides practical skills in the use of MAPLE in the context of probability and its applications. It offers to graduates and advanced undergraduates an overview and intuitive background for more advanced studies.

Probability, Stochastic Processes, and Queueing Theory

The Mathematics of Computer Performance Modeling
Author: Randolph Nelson
Publisher: Springer Science & Business Media
ISBN: 9780387944524
Category: Computers
Page: 583
View: 4931
DOWNLOAD NOW »
Subjects covered include renewal processes, queueing theory, Markov processes, matrix geometric techniques, reversibility, and networks of queues. Examples and applications are drawn from problems in computer performance modeling.

Stochastic Calculus of Variations in Mathematical Finance


Author: Paul Malliavin,Anton Thalmaier
Publisher: Springer Science & Business Media
ISBN: 3540307990
Category: Business & Economics
Page: 142
View: 6285
DOWNLOAD NOW »
Highly esteemed author Topics covered are relevant and timely

Kalman-Bucy-Filter

determinist. Beobachtung u. stochast. Filterung
Author: Karl Brammer,Gerhard Siffling
Publisher: N.A
ISBN: N.A
Category: Control theory
Page: 232
View: 8099
DOWNLOAD NOW »
Das Buch will die mannigfaltigen Aufgaben der heutigen Regelungs- und Steuerungstechnik und ihre Lösung nahebringen. Das soll mit möglichst geringem Zeit- und Arbeitsaufwand für den Leser verbunden sein. Leichte Verständlichkeit, Anschaulichkeit und Anwendungsnähe sind deshalb Hauptgesichtspunkt der Darstellung. Vollständigkeit ist nicht angestrebt, vielmehr Darstellung des Wesentlichen. Mathematische Methoden werden auf das Notwendige beschränkt.

Wahrscheinlichkeitsrechnung für Dummies


Author: Deborah J. Rumsey
Publisher: John Wiley & Sons
ISBN: 3527805494
Category: Mathematics
Page: 374
View: 3235
DOWNLOAD NOW »
Die Wahrscheinlichkeitsrechnung wird in der Schule oft nur beiläufig behandelt, dabei handelt es sich um ein besonders spannendes und alltagstaugliches Teilgebiet der Mathematik. Für alle, die über dieses Thema noch etwas mehr erfahren wollen oder müssen, erklärt Deborah Rumsey verständlich und mit Humor, was sie unbedingt wissen sollten. Egal ob Kontingenztabelle, zentraler Grenzwertsatz, Stichproben-, Binomial- oder Poissonverteilung, in diesem Buch lernen Sie, was es ist und wie Sie es anwenden. Zu jedem Kapitel finden Sie online eine Übungsaufgabe samt Lösung, um das Gelernte zu festigen. Auch Tipps zu praktischen Anwendungen - ob bei der Arbeit oder am Pokertisch - kommen nicht zu kurz. So finden Sie in diesem Buch alles, was Sie über Wahrscheinlichkeitsrechnung unbedingt wissen sollten.

Probability-1


Author: Albert N. Shiryaev
Publisher: Springer
ISBN: 0387722068
Category: Mathematics
Page: 486
View: 5136
DOWNLOAD NOW »
Advanced maths students have been waiting for this, the third edition of a text that deals with one of the fundamentals of their field. This book contains a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks and the Kalman-Bucy filter. Examples are discussed in detail, and there are a large number of exercises. This third edition contains new problems and exercises, new proofs, expanded material on financial mathematics, financial engineering, and mathematical statistics, and a final chapter on the history of probability theory.

Probability and Stochastic Processes

A Friendly Introduction for Electrical and Computer Engineers
Author: Roy D. Yates,David J. Goodman
Publisher: John Wiley & Sons
ISBN: 1118324560
Category: Mathematics
Page: 512
View: 6544
DOWNLOAD NOW »
This text introduces engineering students to probability theory and stochastic processes. Along with thorough mathematical development of the subject, the book presents intuitive explanations of key points in order to give students the insights they need to apply math to practical engineering problems. The first seven chapters contain the core material that is essential to any introductory course. In one-semester undergraduate courses, instructors can select material from the remaining chapters to meet their individual goals. Graduate courses can cover all chapters in one semester.

Stochastic Integrals

An Introduction
Author: Heinrich von Weizsäcker
Publisher: Springer-Verlag
ISBN: 3663139239
Category: Mathematics
Page: 332
View: 3913
DOWNLOAD NOW »


Applied Probability and Stochastic Processes


Author: Richard M. Feldman,Ciriaco Valdez-Flores
Publisher: Springer Science & Business Media
ISBN: 9783642051586
Category: Technology & Engineering
Page: 397
View: 5369
DOWNLOAD NOW »
This book is a result of teaching stochastic processes to junior and senior undergr- uates and beginning graduate students over many years. In teaching such a course, we have realized a need to furnish students with material that gives a mathematical presentation while at the same time providing proper foundations to allow students to build an intuitive feel for probabilistic reasoning. We have tried to maintain a b- ance in presenting advanced but understandable material that sparks an interest and challenges students, without the discouragement that often comes as a consequence of not understanding the material. Our intent in this text is to develop stochastic p- cesses in an elementary but mathematically precise style and to provide suf?cient examples and homework exercises that will permit students to understand the range of application areas for stochastic processes. We also practice active learning in the classroom. In other words, we believe that the traditional practice of lecturing continuously for 50 to 75 minutes is not a very effective method for teaching. Students should somehow engage in the subject m- ter during the teaching session. One effective method for active learning is, after at most 20 minutes of lecture, to assign a small example problem for the students to work and one important tool that the instructor can utilize is the computer. So- times we are fortunate to lecture students in a classroom containing computers with a spreadsheet program, usually Microsoft’s Excel.