## Probability and Stochastics

**Author**: Erhan Çınlar

**Publisher:**Springer Science & Business Media

**ISBN:**9780387878591

**Category:**Mathematics

**Page:**558

**View:**3300

**DOWNLOAD NOW »**

This text is an introduction to the modern theory and applications of probability and stochastics. The style and coverage is geared towards the theory of stochastic processes, but with some attention to the applications. In many instances the gist of the problem is introduced in practical, everyday language and then is made precise in mathematical form. The first four chapters are on probability theory: measure and integration, probability spaces, conditional expectations, and the classical limit theorems. There follows chapters on martingales, Poisson random measures, Levy Processes, Brownian motion, and Markov Processes. Special attention is paid to Poisson random measures and their roles in regulating the excursions of Brownian motion and the jumps of Levy and Markov processes. Each chapter has a large number of varied examples and exercises. The book is based on the author’s lecture notes in courses offered over the years at Princeton University. These courses attracted graduate students from engineering, economics, physics, computer sciences, and mathematics. Erhan Cinlar has received many awards for excellence in teaching, including the President’s Award for Distinguished Teaching at Princeton University. His research interests include theories of Markov processes, point processes, stochastic calculus, and stochastic flows. The book is full of insights and observations that only a lifetime researcher in probability can have, all told in a lucid yet precise style.

## Elementare Wahrscheinlichkeitstheorie und stochastische Prozesse

**Author**: Kai L. Chung

**Publisher:**Springer-Verlag

**ISBN:**3642670334

**Category:**Mathematics

**Page:**346

**View:**7285

**DOWNLOAD NOW »**

Aus den Besprechungen: "Unter den zahlreichen Einführungen in die Wahrscheinlichkeitsrechnung bildet dieses Buch eine erfreuliche Ausnahme. Der Stil einer lebendigen Vorlesung ist über Niederschrift und Übersetzung hinweg erhalten geblieben. In jedes Kapitel wird sehr anschaulich eingeführt. Sinn und Nützlichkeit der mathematischen Formulierungen werden den Lesern nahegebracht. Die wichtigsten Zusammenhänge sind als mathematische Sätze klar formuliert." #FREQUENZ#1

## Wahrscheinlichkeitstheorie und Stochastische Prozesse

**Author**: Michael Mürmann

**Publisher:**Springer-Verlag

**ISBN:**364238160X

**Category:**Mathematics

**Page:**428

**View:**7261

**DOWNLOAD NOW »**

Dieses Lehrbuch beschäftigt sich mit den zentralen Gebieten einer maßtheoretisch orientierten Wahrscheinlichkeitstheorie im Umfang einer zweisemestrigen Vorlesung. Nach den Grundlagen werden Grenzwertsätze und schwache Konvergenz behandelt. Es folgt die Darstellung und Betrachtung der stochastischen Abhängigkeit durch die bedingte Erwartung, die mit der Radon-Nikodym-Ableitung realisiert wird. Sie wird angewandt auf die Theorie der stochastischen Prozesse, die nach der allgemeinen Konstruktion aus der Untersuchung von Martingalen und Markov-Prozessen besteht. Neu in einem Lehrbuch über allgemeine Wahrscheinlichkeitstheorie ist eine Einführung in die stochastische Analysis von Semimartingalen auf der Grundlage einer geeigneten Stetigkeitsbedingung mit Anwendungen auf die Theorie der Finanzmärkte. Das Buch enthält zahlreiche Übungen, teilweise mit Lösungen. Neben der Theorie vertiefen Anmerkungen, besonders zu mathematischen Modellen für Phänomene der Realität, das Verständnis.

## Brownian Motion and Stochastic Calculus

**Author**: Ioannis Karatzas,Steven Shreve

**Publisher:**Springer

**ISBN:**1461209498

**Category:**Mathematics

**Page:**470

**View:**5873

**DOWNLOAD NOW »**

A graduate-course text, written for readers familiar with measure-theoretic probability and discrete-time processes, wishing to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed, illustrated by results concerning representations of martingales and change of measure on Wiener space, which in turn permit a presentation of recent advances in financial economics. The book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The whole is backed by a large number of problems and exercises.

## Simulation and Inference for Stochastic Processes with YUIMA

*A Comprehensive R Framework for SDEs and Other Stochastic Processes*

**Author**: Stefano M. Iacus,Nakahiro Yoshida

**Publisher:**Springer

**ISBN:**3319555693

**Category:**Computers

**Page:**268

**View:**6855

**DOWNLOAD NOW »**

The YUIMA package is the first comprehensive R framework based on S4 classes and methods which allows for the simulation of stochastic differential equations driven by Wiener process, Lévy processes or fractional Brownian motion, as well as CARMA, COGARCH, and Point processes. The package performs various central statistical analyses such as quasi maximum likelihood estimation, adaptive Bayes estimation, structural change point analysis, hypotheses testing, asynchronous covariance estimation, lead-lag estimation, LASSO model selection, and so on. YUIMA also supports stochastic numerical analysis by fast computation of the expected value of functionals of stochastic processes through automatic asymptotic expansion by means of the Malliavin calculus. All models can be multidimensional, multiparametric or non parametric.The book explains briefly the underlying theory for simulation and inference of several classes of stochastic processes and then presents both simulation experiments and applications to real data. Although these processes have been originally proposed in physics and more recently in finance, they are becoming popular also in biology due to the fact the time course experimental data are now available. The YUIMA package, available on CRAN, can be freely downloaded and this companion book will make the user able to start his or her analysis from the first page.

## Probability-1

**Author**: Albert N. Shiryaev

**Publisher:**Springer

**ISBN:**0387722068

**Category:**Mathematics

**Page:**486

**View:**8975

**DOWNLOAD NOW »**

Advanced maths students have been waiting for this, the third edition of a text that deals with one of the fundamentals of their field. This book contains a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks and the Kalman-Bucy filter. Examples are discussed in detail, and there are a large number of exercises. This third edition contains new problems and exercises, new proofs, expanded material on financial mathematics, financial engineering, and mathematical statistics, and a final chapter on the history of probability theory.

## Probabilistic Theory of Mean Field Games with Applications I

*Mean Field FBSDEs, Control, and Games*

**Author**: René Carmona,François Delarue

**Publisher:**Springer

**ISBN:**3319589202

**Category:**Mathematics

**Page:**714

**View:**9434

**DOWNLOAD NOW »**

This two-volume book offers a comprehensive treatment of the probabilistic approach to mean field game models and their applications. The book is self-contained in nature and includes original material and applications with explicit examples throughout, including numerical solutions. Volume I of the book is entirely devoted to the theory of mean field games without a common noise. The first half of the volume provides a self-contained introduction to mean field games, starting from concrete illustrations of games with a finite number of players, and ending with ready-for-use solvability results. Readers are provided with the tools necessary for the solution of forward-backward stochastic differential equations of the McKean-Vlasov type at the core of the probabilistic approach. The second half of this volume focuses on the main principles of analysis on the Wasserstein space. It includes Lions' approach to the Wasserstein differential calculus, and the applications of its results to the analysis of stochastic mean field control problems. Together, both Volume I and Volume II will greatly benefit mathematical graduate students and researchers interested in mean field games. The authors provide a detailed road map through the book allowing different access points for different readers and building up the level of technical detail. The accessible approach and overview will allow interested researchers in the applied sciences to obtain a clear overview of the state of the art in mean field games.

## Probabilistic Theory of Mean Field Games with Applications II

*Mean Field Games with Common Noise and Master Equations*

**Author**: René Carmona,François Delarue

**Publisher:**Springer

**ISBN:**3319564366

**Category:**Mathematics

**Page:**700

**View:**9793

**DOWNLOAD NOW »**

This two-volume book offers a comprehensive treatment of the probabilistic approach to mean field game models and their applications. The book is self-contained in nature and includes original material and applications with explicit examples throughout, including numerical solutions. Volume II tackles the analysis of mean field games in which the players are affected by a common source of noise. The first part of the volume introduces and studies the concepts of weak and strong equilibria, and establishes general solvability results. The second part is devoted to the study of the master equation, a partial differential equation satisfied by the value function of the game over the space of probability measures. Existence of viscosity and classical solutions are proven and used to study asymptotics of games with finitely many players. Together, both Volume I and Volume II will greatly benefit mathematical graduate students and researchers interested in mean field games. The authors provide a detailed road map through the book allowing different access points for different readers and building up the level of technical detail. The accessible approach and overview will allow interested researchers in the applied sciences to obtain a clear overview of the state of the art in mean field games.

## Probability Theory II

**Author**: M. Loeve

**Publisher:**Springer Science & Business Media

**ISBN:**9780387902623

**Category:**Mathematics

**Page:**416

**View:**9408

**DOWNLOAD NOW »**

This book is intended as a text for graduate students and as a reference for workers in probability and statistics. The prerequisite is honest calculus. The material covered in Parts Two to Five inclusive requires about three to four semesters of graduate study. The introductory part may serve as a text for an undergraduate course in elementary probability theory. Numerous historical marks about results, methods, and the evolution of various fields are an intrinsic part of the text. About a third of the second volume is devoted to conditioning and properties of sequences of various types of dependence. The other two thirds are devoted to random functions; the last Part on Elements of random analysis is more sophisticated.

## Probability Theory I

**Author**: M. Loeve

**Publisher:**Springer Science & Business Media

**ISBN:**9780387902104

**Category:**Mathematics

**Page:**428

**View:**5973

**DOWNLOAD NOW »**

This fourth edition contains several additions. The main ones con cern three closely related topics: Brownian motion, functional limit distributions, and random walks. Besides the power and ingenuity of their methods and the depth and beauty of their results, their importance is fast growing in Analysis as well as in theoretical and applied Proba bility. These additions increased the book to an unwieldy size and it had to be split into two volumes. About half of the first volume is devoted to an elementary introduc tion, then to mathematical foundations and basic probability concepts and tools. The second half is devoted to a detailed study of Independ ence which played and continues to playa central role both by itself and as a catalyst. The main additions consist of a section on convergence of probabilities on metric spaces and a chapter whose first section on domains of attrac tion completes the study of the Central limit problem, while the second one is devoted to random walks. About a third of the second volume is devoted to conditioning and properties of sequences of various types of dependence. The other two thirds are devoted to random functions; the last Part on Elements of random analysis is more sophisticated. The main addition consists of a chapter on Brownian motion and limit distributions.

## Stochastik

*Einführung in die Wahrscheinlichkeitstheorie und Statistik*

**Author**: Hans-Otto Georgii

**Publisher:**Walter de Gruyter GmbH & Co KG

**ISBN:**3110386860

**Category:**Mathematics

**Page:**448

**View:**480

**DOWNLOAD NOW »**

Due to the extremely positive reception of this textbook, it is now being published in its 5th edition. The book provides an introduction to the key ideas and elements of probability theory and statistics. Stochastic concepts, models, and methods are highlighted through typical application examples, then analyzed theoretically and systematically explored.

## Mathematische Statistik

**Author**: Bartel L. van der Waerden

**Publisher:**Springer-Verlag

**ISBN:**3642649742

**Category:**Mathematics

**Page:**360

**View:**7406

**DOWNLOAD NOW »**

## Probability, Stochastic Processes, and Queueing Theory

*The Mathematics of Computer Performance Modeling*

**Author**: Randolph Nelson

**Publisher:**Springer Science & Business Media

**ISBN:**9780387944524

**Category:**Computers

**Page:**583

**View:**1225

**DOWNLOAD NOW »**

Subjects covered include renewal processes, queueing theory, Markov processes, matrix geometric techniques, reversibility, and networks of queues. Examples and applications are drawn from problems in computer performance modeling.

## Die Mathe-Wichtel Band 1

*Humorvolle Aufgaben mit Lösungen für mathematisches Entdecken ab der Grundschule*

**Author**: Stephanie Schiemann,Robert Wöstenfeld

**Publisher:**Springer-Verlag

**ISBN:**3658138874

**Category:**Science

**Page:**137

**View:**9821

**DOWNLOAD NOW »**

Die Mathe-Wichtel stammen aus dem Schülerwettbewerb der Deutschen Mathematiker-Vereinigung (DMV), bekannt als „Mathe im Advent“. Für dieses Buch wurden die schönsten Aufgaben der letzten Jahre ausgewählt und umfassend überarbeitet. Sie geben auf humorvolle Art einen Einblick in die wunderbare Vielfalt der Mathematik, fördern den mathematischen Entdeckungsdrang und das kreative Weiterdenken auf spielerische Weise. So erweitern sie das in der Schule vermittelte Bild der Mathematik und begeistern selbst diejenigen, die mit ihr bisher auf Kriegsfuß standen. Die 2. Auflage enthält zusätzliche aktuelle Aufgaben aus „Mathe im Advent“, erweiterte Lösungstexte, neue Aufgaben zum Weiterdenken und weiterführende Tipps für Lehrer(innen) zum Einsatz in der Schule oder Lehrerausbildung. Für Schülerinnen und Schüler ab der Grundschule (insbesondere Klassen 4 bis 6), Eltern, Mathematiklehrer(innen) und allgemein für alle an Mathematik und Problemlösen interessierte Laien.

## Applied Probability and Stochastic Processes

**Author**: Richard M. Feldman,Ciriaco Valdez-Flores

**Publisher:**Springer Science & Business Media

**ISBN:**9783642051586

**Category:**Technology & Engineering

**Page:**397

**View:**9856

**DOWNLOAD NOW »**

This book is a result of teaching stochastic processes to junior and senior undergr- uates and beginning graduate students over many years. In teaching such a course, we have realized a need to furnish students with material that gives a mathematical presentation while at the same time providing proper foundations to allow students to build an intuitive feel for probabilistic reasoning. We have tried to maintain a b- ance in presenting advanced but understandable material that sparks an interest and challenges students, without the discouragement that often comes as a consequence of not understanding the material. Our intent in this text is to develop stochastic p- cesses in an elementary but mathematically precise style and to provide suf?cient examples and homework exercises that will permit students to understand the range of application areas for stochastic processes. We also practice active learning in the classroom. In other words, we believe that the traditional practice of lecturing continuously for 50 to 75 minutes is not a very effective method for teaching. Students should somehow engage in the subject m- ter during the teaching session. One effective method for active learning is, after at most 20 minutes of lecture, to assign a small example problem for the students to work and one important tool that the instructor can utilize is the computer. So- times we are fortunate to lecture students in a classroom containing computers with a spreadsheet program, usually Microsoft’s Excel.

## Stochastic Integration Theory

**Author**: Peter Medvegyev

**Publisher:**Oxford University Press on Demand

**ISBN:**0199215251

**Category:**Business & Economics

**Page:**608

**View:**9988

**DOWNLOAD NOW »**

This graduate level text covers the theory of stochastic integration, an important area of Mathematics that has a wide range of applications, including financial mathematics and signal processing. Aimed at graduate students in Mathematics, Statistics, Probability, Mathematical Finance, and Economics, the book not only covers the theory of the stochastic integral in great depth but also presents the associated theory (martingales, Levy processes) and important examples (Brownianmotion, Poisson process).

## Probability on Algebraic and Geometric Structures

**Author**: Gregory Budzban,Harry Randolph Hughes,Henri Schurz

**Publisher:**American Mathematical Soc.

**ISBN:**1470419459

**Category:**Combinatorial geometry

**Page:**221

**View:**7614

**DOWNLOAD NOW »**

This volume contains the proceedings of the International Research Conference “Probability on Algebraic and Geometric Structures”, held from June 5–7, 2014, at Southern Illinois University, Carbondale, IL, celebrating the careers of Philip Feinsilver, Salah-Eldin A. Mohammed, and Arunava Mukherjea. These proceedings include survey papers and new research on a variety of topics such as probability measures and the behavior of stochastic processes on groups, semigroups, and Clifford algebras; algebraic methods for analyzing Markov chains and products of random matrices; stochastic integrals and stochastic ordinary, partial, and functional differential equations.

## Wahrscheinlichkeitsrechnung und Statistik

**Author**: Robert Hafner

**Publisher:**Springer-Verlag

**ISBN:**3709169445

**Category:**Mathematics

**Page:**512

**View:**8900

**DOWNLOAD NOW »**

Das Buch ist eine Einführung in die Wahrscheinlichkeitsrechnung und mathematische Statistik auf mittlerem mathematischen Niveau. Die Pädagogik der Darstellung unterscheidet sich in wesentlichen Teilen – Einführung der Modelle für unabhängige und abhängige Experimente, Darstellung des Suffizienzbegriffes, Ausführung des Zusammenhanges zwischen Testtheorie und Theorie der Bereichschätzung, allgemeine Diskussion der Modellentwicklung – erheblich von der anderer vergleichbarer Lehrbücher. Die Darstellung ist, soweit auf diesem Niveau möglich, mathematisch exakt, verzichtet aber bewußt und ebenfalls im Gegensatz zu vergleichbaren Texten auf die Erörterung von Meßbarkeitsfragen. Der Leser wird dadurch erheblich entlastet, ohne daß wesentliche Substanz verlorengeht. Das Buch will allen, die an der Anwendung der Statistik auf solider Grundlage interessiert sind, eine Einführung bieten, und richtet sich an Studierende und Dozenten aller Studienrichtungen, für die mathematische Statistik ein Werkzeug ist.

## An Introduction to Probability and Stochastic Processes

**Author**: James L. Melsa,Andrew P. Sage

**Publisher:**Courier Corporation

**ISBN:**0486315959

**Category:**Mathematics

**Page:**416

**View:**6358

**DOWNLOAD NOW »**

Detailed coverage of probability theory, random variables and their functions, stochastic processes, linear system response to stochastic processes, Gaussian and Markov processes, and stochastic differential equations. 1973 edition.

## Theory of Stochastic Objects

*Probability, Stochastic Processes and Inference*

**Author**: Athanasios Christou Micheas

**Publisher:**CRC Press

**ISBN:**1466515228

**Category:**Mathematics

**Page:**378

**View:**4902

**DOWNLOAD NOW »**

This book defines and investigates the concept of a random object. To accomplish this task in a natural way, it brings together three major areas; statistical inference, measure-theoretic probability theory and stochastic processes. This point of view has not been explored by existing textbooks; one would need material on real analysis, measure and probability theory, as well as stochastic processes - in addition to at least one text on statistics- to capture the detail and depth of material that has gone into this volume. Presents and illustrates ‘random objects’ in different contexts, under a unified framework, starting with rudimentary results on random variables and random sequences, all the way up to stochastic partial differential equations. Reviews rudimentary probability and introduces statistical inference, from basic to advanced, thus making the transition from basic statistical modeling and estimation to advanced topics more natural and concrete. Compact and comprehensive presentation of the material that will be useful to a reader from the mathematics and statistical sciences, at any stage of their career, either as a graduate student, an instructor, or an academician conducting research and requiring quick references and examples to classic topics. Includes 378 exercises, with the solutions manual available on the book's website. 121 illustrative examples of the concepts presented in the text (many including multiple items in a single example). The book is targeted towards students at the master’s and Ph.D. levels, as well as, academicians in the mathematics, statistics and related disciplines. Basic knowledge of calculus and matrix algebra is required. Prior knowledge of probability or measure theory is welcomed but not necessary.