## Surgery on Compact Manifolds

**Author**: Charles Terence Clegg Wall,Andrew Ranicki

**Publisher:**American Mathematical Soc.

**ISBN:**0821809423

**Category:**Mathematics

**Page:**302

**View:**7600

**DOWNLOAD NOW »**

The publication of this book in 1970 marked the culmination of a period in the history of the topology of manifolds. This edition, based on the original text, is supplemented by notes on subsequent developments and updated references and commentaries.

## Surgery on Compact Manifolds

**Author**: Charles Terence Clegg Wall,Andrew Ranicki

**Publisher:**American Mathematical Soc.

**ISBN:**0821809423

**Category:**Mathematics

**Page:**302

**View:**3815

**DOWNLOAD NOW »**

The publication of this book in 1970 marked the culmination of a period in the history of the topology of manifolds. This edition, based on the original text, is supplemented by notes on subsequent developments and updated references and commentaries.

## The Wild World of 4-manifolds

**Author**: Alexandru Scorpan

**Publisher:**American Mathematical Soc.

**ISBN:**0821837494

**Category:**Mathematics

**Page:**609

**View:**1056

**DOWNLOAD NOW »**

What a wonderful book! I strongly recommend this book to anyone, especially graduate students, interested in getting a sense of 4-manifolds. --MAA Reviews The book gives an excellent overview of 4-manifolds, with many figures and historical notes. Graduate students, nonexperts, and experts alike will enjoy browsing through it. -- Robion C. Kirby, University of California, Berkeley This book offers a panorama of the topology of simply connected smooth manifolds of dimension four. Dimension four is unlike any other dimension; it is large enough to have room for wild things to happen, but small enough so that there is no room to undo the wildness. For example, only manifolds of dimension four can exhibit infinitely many distinct smooth structures. Indeed, their topology remains the least understood today. To put things in context, the book starts with a survey of higher dimensions and of topological 4-manifolds. In the second part, the main invariant of a 4-manifold--the intersection form--and its interaction with the topology of the manifold are investigated. In the third part, as an important source of examples, complex surfaces are reviewed. In the final fourth part of the book, gauge theory is presented; this differential-geometric method has brought to light how unwieldy smooth 4-manifolds truly are, and while bringing new insights, has raised more questions than answers. The structure of the book is modular, organized into a main track of about two hundred pages, augmented by extensive notes at the end of each chapter, where many extra details, proofs and developments are presented. To help the reader, the text is peppered with over 250 illustrations and has an extensive index.

## Embeddings in Manifolds

**Author**: Robert J. Daverman,Gerard Venema

**Publisher:**American Mathematical Soc.

**ISBN:**0821836978

**Category:**Mathematics

**Page:**468

**View:**8931

**DOWNLOAD NOW »**

A topological embedding is a homeomorphism of one space onto a subspace of another. The book analyzes how and when objects like polyhedra or manifolds embed in a given higher-dimensional manifold. The main problem is to determine when two topological embeddings of the same object are equivalent in the sense of differing only by a homeomorphism of the ambient manifold. Knot theory is the special case of spheres smoothly embedded in spheres; in this book, much more general spaces and much more general embeddings are considered. A key aspect of the main problem is taming: when is a topological embedding of a polyhedron equivalent to a piecewise linear embedding? A central theme of the book is the fundamental role played by local homotopy properties of the complement in answering this taming question. The book begins with a fresh description of the various classic examples of wild embeddings (i.e., embeddings inequivalent to piecewise linear embeddings). Engulfing, the fundamental tool of the subject, is developed next. After that, the study of embeddings is organized by codimension (the difference between the ambient dimension and the dimension of the embedded space). In all codimensions greater than two, topological embeddings of compacta are approximated by nicer embeddings, nice embeddings of polyhedra are tamed, topological embeddings of polyhedra are approximated by piecewise linear embeddings, and piecewise linear embeddings are locally unknotted. Complete details of the codimension-three proofs, including the requisite piecewise linear tools, are provided. The treatment of codimension-two embeddings includes a self-contained, elementary exposition of the algebraic invariants needed to construct counterexamples to the approximation and existence of embeddings. The treatment of codimension-one embeddings includes the locally flat approximation theorem for manifolds as well as the characterization of local flatness in terms of local homotopy properties.

## Open Problems in Mathematics

**Author**: John Forbes Nash, Jr.,Michael Th. Rassias

**Publisher:**Springer

**ISBN:**3319321625

**Category:**Mathematics

**Page:**543

**View:**4896

**DOWNLOAD NOW »**

The goal in putting together this unique compilation was to present the current status of the solutions to some of the most essential open problems in pure and applied mathematics. Emphasis is also given to problems in interdisciplinary research for which mathematics plays a key role. This volume comprises highly selected contributions by some of the most eminent mathematicians in the international mathematical community on longstanding problems in very active domains of mathematical research. A joint preface by the two volume editors is followed by a personal farewell to John F. Nash, Jr. written by Michael Th. Rassias. An introduction by Mikhail Gromov highlights some of Nash’s legendary mathematical achievements. The treatment in this book includes open problems in the following fields: algebraic geometry, number theory, analysis, discrete mathematics, PDEs, differential geometry, topology, K-theory, game theory, fluid mechanics, dynamical systems and ergodic theory, cryptography, theoretical computer science, and more. Extensive discussions surrounding the progress made for each problem are designed to reach a wide community of readers, from graduate students and established research mathematicians to physicists, computer scientists, economists, and research scientists who are looking to develop essential and modern new methods and theories to solve a variety of open problems.

## The Poincar Conjecture

**Author**: James Carlson

**Publisher:**American Mathematical Soc.

**ISBN:**0821898655

**Category:**Mathematics

**Page:**178

**View:**6330

**DOWNLOAD NOW »**

The conference to celebrate the resolution of the Poincare conjecture, which is one of the Clay Mathematics Institute's seven Millennium Prize Problems, was held at the Institut Henri Poincare in Paris. Several leading mathematicians gave lectures providing an overview of the conjecture--its history, its influence on the development of mathematics, and, finally, its proof. This volume contains papers based on the lectures at that conference. Taken together, they form an extraordinary record of the work that went into the solution of one of the great problems of mathematics.

## Surgery on Compact Manifolds

**Author**: Charles Terence Clegg Wall,Andrew Ranicki

**Publisher:**American Mathematical Soc.

**ISBN:**0821809423

**Category:**Mathematics

**Page:**302

**View:**9489

**DOWNLOAD NOW »**

The publication of this book in 1970 marked the culmination of a period in the history of the topology of manifolds. This edition, based on the original text, is supplemented by notes on subsequent developments and updated references and commentaries.

## Bulletin (new Series) of the American Mathematical Society

**Author**: N.A

**Publisher:**N.A

**ISBN:**N.A

**Category:**Mathematics

**Page:**N.A

**View:**338

**DOWNLOAD NOW »**

## Ricci Flow and the Poincaré Conjecture

**Author**: John W. Morgan,G. Tian

**Publisher:**American Mathematical Soc.

**ISBN:**9780821843284

**Category:**Mathematics

**Page:**521

**View:**8578

**DOWNLOAD NOW »**

For over 100 years the Poincare Conjecture, which proposes a topological characterization of the 3-sphere, has been the central question in topology. Since its formulation, it has been repeatedly attacked, without success, using various topological methods. Its importance and difficulty were highlighted when it was chosen as one of the Clay Mathematics Institute's seven Millennium Prize Problems. In 2002 and 2003 Grigory Perelman posted three preprints showing how to use geometric arguments, in particular the Ricci flow as introduced and studied by Hamilton, to establish the Poincare Conjecture in the affirmative. This book provides full details of a complete proof of the Poincare Conjecture following Perelman's three preprints. After a lengthy introduction that outlines the entire argument, the book is divided into four parts. The first part reviews necessary results from Riemannian geometry and Ricci flow, including much of Hamilton's work. The second part starts with Perelman's length function, which is used to establish crucial non-collapsing theorems. Then it discusses the classification of non-collapsed, ancient solutions to the Ricci flow equation. The third part concerns the existence of Ricci flow with surgery for all positive time and an analysis of the topological and geometric changes introduced by surgery. The last part follows Perelman's third preprint to prove that when the initial Riemannian 3-manifold has finite fundamental group, Ricci flow with surgery becomes extinct after finite time. The proofs of the Poincare Conjecture and the closely related 3-dimensional spherical space-form conjecture are then immediate. The existence of Ricci flow with surgery has application to 3-manifolds far beyond the Poincare Conjecture. It forms the heart of the proof via Ricci flow of Thurston's Geometrization Conjecture. Thurston's Geometrization Conjecture, which classifies all compact 3-manifolds, will be the subject of a follow-up article. The organization of the material in this book differs from that given by Perelman. From the beginning the authors present all analytic and geometric arguments in the context of Ricci flow with surgery. In addition, the fourth part is a much-expanded version of Perelman's third preprint; it gives the first complete and detailed proof of the finite-time extinction theorem. With the large amount of background material that is presented and the detailed versions of the central arguments, this book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology. Clay Mathematics Institute Monograph Series The Clay Mathematics Institute Monograph Series publishes selected expositions of recent developments, both in emerging areas and in older subjects transformed by new insights or unifying ideas.

## Algebraic and Geometric Topology

**Author**: N.A

**Publisher:**N.A

**ISBN:**N.A

**Category:**Algebraic topology

**Page:**N.A

**View:**5514

**DOWNLOAD NOW »**

## The Convenient Setting of Global Analysis

**Author**: Andreas Kriegl,Peter W. Michor

**Publisher:**American Mathematical Soc.

**ISBN:**0821807803

**Category:**Mathematics

**Page:**618

**View:**8338

**DOWNLOAD NOW »**

This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory. The approach is simple: a mapping is called smooth if it maps smooth curves to smooth curves. Up to Frechet spaces, this notion of smoothness coincides with all known reasonable concepts. In the same spirit, calculus of holomorphic mappings (including Hartogs' theorem and holomorphic uniform boundedness theorems) and calculus of real analytic mappings are developed. Existence of smooth partitions of unity, the foundations of manifold theory in infinite dimensions, the relation between tangent vectors and derivations, and differential forms are discussed thoroughly. Special emphasis is given to the notion of regular infinite dimensional Lie groups. Many applications of this theory are included: manifolds of smooth mappings, groups of diffeomorphisms, geodesics on spaces of Riemannian metrics, direct limit manifolds, perturbation theory of operators, and differentiability questions of infinite dimensional representations.

## A Geometric Introduction to Topology

**Author**: Charles Terence Clegg Wall

**Publisher:**Courier Corporation

**ISBN:**0486678504

**Category:**Mathematics

**Page:**168

**View:**5464

**DOWNLOAD NOW »**

First course in algebraic topology for advanced undergraduates. Homotopy theory, the duality theorem, relation of topological ideas to other branches of pure mathematics. Exercises and problems. 1972 edition.

## Algebraic and Geometric Surgery

**Author**: Andrew Ranicki

**Publisher:**Oxford University Press

**ISBN:**0198509243

**Category:**Mathematics

**Page:**373

**View:**4676

**DOWNLOAD NOW »**

'An excellent framework for various courses in Surgery Theory... very readable... I read this fine and carefully written book with great pleasure, and highly recommend it for everyone who wants to undertake a deeper study of Surgery Theory and its Applications.' -Alberto Cavicchioli (Modena), Zentralblatt MATHThis book is an introduction to surgery theory: the standard classification method for high-dimensional manifolds. It is aimed at graduate students, who have already had a basic topology course, and would now like to understand the topology of high-dimensional manifolds. This text contains entry-level accounts of the various prerequisites of both algebra and topology, including basic homotopy and homology, Poincare duality, bundles, cobordism, embeddings, immersions, Whitehead torsion, Poincare complexes, spherical fibrations and quadratic forms and formations. While concentrating on the basic mechanics of surgery, this book includes many worked examples, useful drawings for illustration of the algebra and references for further reading.

## Subject Guide to Books in Print

*An Index to the Publishers' Trade List Annual*

**Author**: N.A

**Publisher:**N.A

**ISBN:**N.A

**Category:**American literature

**Page:**N.A

**View:**6152

**DOWNLOAD NOW »**

## Surveys on Surgery Theory

*Papers Dedicated to C.T.C. Wall*

**Author**: Sylvain E. Cappell,Charles Terence Clegg Wall,Andrew Ranicki,Jonathan Rosenberg

**Publisher:**Princeton University Press

**ISBN:**9780691049380

**Category:**Mathematics

**Page:**448

**View:**8994

**DOWNLOAD NOW »**

Surgery theory, the basis for the classification theory of manifolds, is now about forty years old. There have been some extraordinary accomplishments in that time, which have led to enormously varied interactions with algebra, analysis, and geometry. Workers in many of these areas have often lamented the lack of a single source that surveys surgery theory and its applications. Indeed, no one person could write such a survey. The sixtieth birthday of C. T. C. Wall, one of the leaders of the founding generation of surgery theory, provided an opportunity to rectify the situation and produce a comprehensive book on the subject. Experts have written state-of-the-art reports that will be of broad interest to all those interested in topology, not only graduate students and mathematicians, but mathematical physicists as well. Contributors include J. Milnor, S. Novikov, W. Browder, T. Lance, E. Brown, M. Kreck, J. Klein, M. Davis, J. Davis, I. Hambleton, L. Taylor, C. Stark, E. Pedersen, W. Mio, J. Levine, K. Orr, J. Roe, J. Milgram, and C. Thomas.

## PAMQ

**Author**: N.A

**Publisher:**N.A

**ISBN:**N.A

**Category:**Mathematics

**Page:**N.A

**View:**5067

**DOWNLOAD NOW »**

## Russian Mathematical Surveys

**Author**: N.A

**Publisher:**N.A

**ISBN:**N.A

**Category:**Mathematicians

**Page:**N.A

**View:**6814

**DOWNLOAD NOW »**

## Geometry & Topology

**Author**: N.A

**Publisher:**N.A

**ISBN:**N.A

**Category:**Geometry

**Page:**N.A

**View:**7691

**DOWNLOAD NOW »**

Fully refereed international journal dealing with all aspects of geometry and topology and their applications.

## An Introduction to Contact Topology

**Author**: Hansjörg Geiges

**Publisher:**Cambridge University Press

**ISBN:**1139467956

**Category:**Mathematics

**Page:**N.A

**View:**1796

**DOWNLOAD NOW »**

This text on contact topology is a comprehensive introduction to the subject, including recent striking applications in geometric and differential topology: Eliashberg's proof of Cerf's theorem via the classification of tight contact structures on the 3-sphere, and the Kronheimer-Mrowka proof of property P for knots via symplectic fillings of contact 3-manifolds. Starting with the basic differential topology of contact manifolds, all aspects of 3-dimensional contact manifolds are treated in this book. One notable feature is a detailed exposition of Eliashberg's classification of overtwisted contact structures. Later chapters also deal with higher-dimensional contact topology. Here the focus is on contact surgery, but other constructions of contact manifolds are described, such as open books or fibre connected sums. This book serves both as a self-contained introduction to the subject for advanced graduate students and as a reference for researchers.

## Monopoles and Three-Manifolds

**Author**: Peter Kronheimer,Tomasz Mrowka

**Publisher:**Cambridge University Press

**ISBN:**1139468669

**Category:**Mathematics

**Page:**N.A

**View:**8636

**DOWNLOAD NOW »**

Originating with Andreas Floer in the 1980s, Floer homology has proved to be an effective tool in tackling many important problems in three- and four-dimensional geometry and topology. This 2007 book provides a comprehensive treatment of Floer homology, based on the Seiberg–Witten monopole equations. After first providing an overview of the results, the authors develop the analytic properties of the Seiberg–Witten equations, assuming only a basic grounding in differential geometry and analysis. The Floer groups of a general three-manifold are then defined and their properties studied in detail. Two final chapters are devoted to the calculation of Floer groups and to applications of the theory in topology. Suitable for beginning graduate students and researchers, this book provides a full discussion of a central part of the study of the topology of manifolds.