Symplectic Topology and Floer Homology: Volume 2, Floer Homology and its Applications


Author: Yong-Geun Oh
Publisher: Cambridge University Press
ISBN: 1316381390
Category: Mathematics
Page: N.A
View: 5976
DOWNLOAD NOW »
Published in two volumes, this is the first book to provide a thorough and systematic explanation of symplectic topology, and the analytical details and techniques used in applying the machinery arising from Floer theory as a whole. Volume 2 provides a comprehensive introduction to both Hamiltonian Floer theory and Lagrangian Floer theory, including many examples of their applications to various problems in symplectic topology. The first volume covered the basic materials of Hamiltonian dynamics and symplectic geometry and the analytic foundations of Gromov's pseudoholomorphic curve theory. Symplectic Topology and Floer Homology is a comprehensive resource suitable for experts and newcomers alike.

Symplectic Topology and Floer Homology


Author: Yong-Geun Oh
Publisher: Cambridge University Press
ISBN: 110707245X
Category: Mathematics
Page: 420
View: 2367
DOWNLOAD NOW »
The first part of a two-volume set offering a systematic explanation of symplectic topology. This volume covers the basic materials of Hamiltonian dynamics and symplectic geometry.

Geometrical Themes Inspired by the N-body Problem


Author: Luis Hernández-Lamoneda,Haydeé Herrera,Rafael Herrera
Publisher: Springer
ISBN: 3319714287
Category: Mathematics
Page: 128
View: 2910
DOWNLOAD NOW »
Presenting a selection of recent developments in geometrical problems inspired by the N-body problem, these lecture notes offer a variety of approaches to study them, ranging from variational to dynamical, while developing new insights, making geometrical and topological detours, and providing historical references. A. Guillot’s notes aim to describe differential equations in the complex domain, motivated by the evolution of N particles moving on the plane subject to the influence of a magnetic field. Guillot studies such differential equations using different geometric structures on complex curves (in the sense of W. Thurston) in order to find isochronicity conditions. R. Montgomery’s notes deal with a version of the planar Newtonian three-body equation. Namely, he investigates the problem of whether every free homotopy class is realized by a periodic geodesic. The solution involves geometry, dynamical systems, and the McGehee blow-up. A novelty of the approach is the use of energy-balance in order to motivate the McGehee transformation. A. Pedroza’s notes provide a brief introduction to Lagrangian Floer homology and its relation to the solution of the Arnol’d conjecture on the minimal number of non-degenerate fixed points of a Hamiltonian diffeomorphism.

Symplectic Topology and Floer Homology: Volume 1, Symplectic Geometry and Pseudoholomorphic Curves


Author: Yong-Geun Oh
Publisher: Cambridge University Press
ISBN: 1316381145
Category: Mathematics
Page: N.A
View: 1837
DOWNLOAD NOW »
Published in two volumes, this is the first book to provide a thorough and systematic explanation of symplectic topology, and the analytical details and techniques used in applying the machinery arising from Floer theory as a whole. Volume 1 covers the basic materials of Hamiltonian dynamics and symplectic geometry and the analytic foundations of Gromov's pseudoholomorphic curve theory. One novel aspect of this treatment is the uniform treatment of both closed and open cases and a complete proof of the boundary regularity theorem of weak solutions of pseudo-holomorphic curves with totally real boundary conditions. Volume 2 provides a comprehensive introduction to both Hamiltonian Floer theory and Lagrangian Floer theory. Symplectic Topology and Floer Homology is a comprehensive resource suitable for experts and newcomers alike.

Einführung in die Symplektische Geometrie


Author: Rolf Berndt
Publisher: Springer-Verlag
ISBN: 9783322802156
Category: Mathematics
Page: 185
View: 874
DOWNLOAD NOW »


Sūgaku Expositions

A Translation of Sūgaku
Author: N.A
Publisher: N.A
ISBN: N.A
Category: Mathematics
Page: N.A
View: 398
DOWNLOAD NOW »


Third International Congress of Chinese Mathematicians


Author: Ka-Sing Lau,Zhouping Xin,Shing-Tung Yau
Publisher: Amer Mathematical Society
ISBN: N.A
Category: Mathematics
Page: 874
View: 7018
DOWNLOAD NOW »
This volume consists of the proceedings of the Third International Congress of Chinese Mathematicians, held at the Chinese University of Hong Kong in December 2004. The Congress brought together eminent Chinese and overseas mathematicians to discuss the latest developments in pure and applied mathematics.

Encyclopedia of mathematical physics


Author: Sheung Tsun Tsou
Publisher: Academic Pr
ISBN: 9780125126601
Category: Science
Page: 3500
View: 2417
DOWNLOAD NOW »
The Encyclopedia of Mathematical Physics provides a complete resource for researchers, students and lecturers with an interest in mathematical physics. It enables readers to access basic information on topics peripheral to their own areas, to provide a repository of the core information in the area that can be used to refresh the researcher's own memory banks, and aid teachers in directing students to entries relevant to their course-work. The Encyclopedia does contain information that has been distilled, organised and presented as a complete reference tool to the user and a landmark to the body of knowledge that has accumulated in this domain. It also is a stimulus for new researchers working in mathematical physics or in areas using the methods originated from work in mathematical physics by providing them with focused high quality background information. * First comprehensive interdisciplinary coverage * Mathematical Physics explained to stimulate new developments and foster new applications of its methods to other fields * Written by an international group of experts * Contains several undergraduate-level introductory articles to facilitate acquisition of new expertise * Thematic index and extensive cross-referencing to provide easy access and quick search functionality * Also available online with active linking.

Einführung in die Geometrie und Topologie


Author: Werner Ballmann
Publisher: Springer-Verlag
ISBN: 3034809018
Category: Mathematics
Page: 162
View: 1492
DOWNLOAD NOW »
Das Buch bietet eine Einführung in die Topologie, Differentialtopologie und Differentialgeometrie. Es basiert auf Manuskripten, die in verschiedenen Vorlesungszyklen erprobt wurden. Im ersten Kapitel werden grundlegende Begriffe und Resultate aus der mengentheoretischen Topologie bereitgestellt. Eine Ausnahme hiervon bildet der Jordansche Kurvensatz, der für Polygonzüge bewiesen wird und eine erste Idee davon vermitteln soll, welcher Art tiefere topologische Probleme sind. Im zweiten Kapitel werden Mannigfaltigkeiten und Liesche Gruppen eingeführt und an einer Reihe von Beispielen veranschaulicht. Diskutiert werden auch Tangential- und Vektorraumbündel, Differentiale, Vektorfelder und Liesche Klammern von Vektorfeldern. Weiter vertieft wird diese Diskussion im dritten Kapitel, in dem die de Rhamsche Kohomologie und das orientierte Integral eingeführt und der Brouwersche Fixpunktsatz, der Jordan-Brouwersche Zerlegungssatz und die Integralformel von Stokes bewiesen werden. Das abschließende vierte Kapitel ist den Grundlagen der Differentialgeometrie gewidmet. Entlang der Entwicklungslinien, die die Geometrie der Kurven und Untermannigfaltigkeiten in Euklidischen Räumen durchlaufen hat, werden Zusammenhänge und Krümmung, die zentralen Konzepte der Differentialgeometrie, diskutiert. Den Höhepunkt bilden die Gaussgleichungen, die Version des theorema egregium von Gauss für Untermannigfaltigkeiten beliebiger Dimension und Kodimension. Das Buch richtet sich in erster Linie an Mathematik- und Physikstudenten im zweiten und dritten Studienjahr und ist als Vorlage für ein- oder zweisemestrige Vorlesungen geeignet.

Der Vierfarbensatz

Geschichte, topologische Grundlagen, und Beweisidee
Author: Rudolf Fritsch
Publisher: N.A
ISBN: 9783411151417
Category: Four-color problem
Page: 251
View: 6988
DOWNLOAD NOW »


Differentialgeometrie, Topologie und Physik


Author: Mikio Nakahara
Publisher: Springer-Verlag
ISBN: 3662453002
Category: Science
Page: 597
View: 1953
DOWNLOAD NOW »
Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.

Mathematical Reviews


Author: N.A
Publisher: N.A
ISBN: N.A
Category: Mathematics
Page: N.A
View: 5730
DOWNLOAD NOW »


Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert


Author: Felix Klein
Publisher: Springer-Verlag
ISBN: 3642672302
Category: Mathematics
Page: 594
View: 8946
DOWNLOAD NOW »


Vorlesungen über Himmelsmechanik


Author: Carl Ludwig Siegel
Publisher: Springer-Verlag
ISBN: 3642946712
Category: Mathematics
Page: 212
View: 1159
DOWNLOAD NOW »


Lokal präsentierbare Kategorien


Author: Peter Gabriel,Friedrich Ulmer
Publisher: Springer-Verlag
ISBN: 3540368868
Category: Mathematics
Page: 200
View: 8642
DOWNLOAD NOW »


Regular Solids and Isolated Singularities


Author: Klaus Lamotke
Publisher: Vieweg+Teubner Verlag
ISBN: 9783528089580
Category: Mathematics
Page: 224
View: 8625
DOWNLOAD NOW »
The last book XIII of Euclid's Elements deals with the regular solids which therefore are sometimes considered as crown of classical geometry. More than two thousand years later around 1850 Schl~fli extended the classification of regular solids to four and more dimensions. A few decades later, thanks to the invention of group and invariant theory the old three dimensional regular solid were involved in the development of new mathematical ideas: F. Klein (Lectures on the Icosa hedron and the Resolution of Equations of Degree Five, 1884) emphasized the relation of the regular solids to the finite rotation groups. He introduced complex coordinates and by means of invariant theory associated polynomial equations with these groups. These equations in turn describe isolated singularities of complex surfaces. The structure of the singularities is investigated by methods of commutative algebra, algebraic and complex analytic geometry, differential and algebraic topology. A paper by DuVal from 1934 (see the References), in which resolutions play an important rele, marked an early stage of these investigations. Around 1970 Klein's polynomials were again related to new mathematical ideas: V. I. Arnold established a hierarchy of critical points of functions in several variables according to growing com plexity. In this hierarchy Kleinls polynomials describe the "simple" critical points.

Vektoranalysis

Differentialformen in Analysis, Geometrie und Physik
Author: Ilka Agricola,Thomas Friedrich
Publisher: Springer-Verlag
ISBN: 3834896721
Category: Mathematics
Page: 313
View: 4700
DOWNLOAD NOW »
Dieses Lehrbuch eignet sich als Fortsetzungskurs in Analysis nach den Grundvorlesungen im ersten Studienjahr. Die Vektoranalysis ist ein klassisches Teilgebiet der Mathematik mit vielfältigen Anwendungen, zum Beispiel in der Physik. Das Buch führt die Studierenden in die Welt der Differentialformen und Analysis auf Untermannigfaltigkeiten des Rn ein. Teile des Buches können auch sehr gut für Vorlesungen in Differentialgeometrie oder Mathematischer Physik verwendet werden. Der Text enthält viele ausführliche Beispiele mit vollständigem Lösungsweg, die zur Übung hilfreich sind. Zahlreiche Abbildungen veranschaulichen den Text. Am Ende jedes Kapitels befinden sich weitere Übungsaufgaben. In der ersten Auflage erschien das Buch unter dem Titel "Globale Analysis". Der Text wurde an vielen Stellen überarbeitet. Fast alle Bilder wurden neu erstellt. Inhaltliche Ergänzungen wurden u. a. in der Differentialgeometrie sowie der Elektrodynamik vorgenommen.

GAMMA

Eulers Konstante, Primzahlstrände und die Riemannsche Vermutung
Author: Julian Havil
Publisher: Springer-Verlag
ISBN: 3540484965
Category: Mathematics
Page: 302
View: 2881
DOWNLOAD NOW »
Jeder kennt p = 3,14159..., viele kennen e = 2,71828..., einige i. Und dann? Die "viertwichtigste" Konstante ist die Eulersche Zahl g = 0,5772156... - benannt nach dem genialen Leonhard Euler (1707-1783). Bis heute ist unbekannt, ob g eine rationale Zahl ist. Das Buch lotet die "obskure" Konstante aus. Die Reise beginnt mit Logarithmen und der harmonischen Reihe. Es folgen Zeta-Funktionen und Eulers wunderbare Identität, Bernoulli-Zahlen, Madelungsche Konstanten, Fettfinger in Wörterbüchern, elende mathematische Würmer und Jeeps in der Wüste. Besser kann man nicht über Mathematik schreiben. Was Julian Havil dazu zu sagen hat, ist spektakulär.

A Course on Rough Paths

With an Introduction to Regularity Structures
Author: Peter K. Friz,Martin Hairer
Publisher: N.A
ISBN: 9783319083339
Category:
Page: 268
View: 6322
DOWNLOAD NOW »


Leibnizens mathematische Schriften


Author: Gottfried Wilhelm Leibniz
Publisher: N.A
ISBN: N.A
Category:
Page: 994
View: 1410
DOWNLOAD NOW »