System Identification

Theory for the User
Author: Lennart Ljung
Publisher: Pearson Education
ISBN: 0132440539
Category: Technology & Engineering
Page: N.A
View: 5449
DOWNLOAD NOW »
The field's leading text, now completely updated. Modeling dynamical systems — theory, methodology, and applications. Lennart Ljung's System Identification: Theory for the User is a complete, coherent description of the theory, methodology, and practice of System Identification. This completely revised Second Edition introduces subspace methods, methods that utilize frequency domain data, and general non-linear black box methods, including neural networks and neuro-fuzzy modeling. The book contains many new computer-based examples designed for Ljung's market-leading software, System Identification Toolbox for MATLAB. Ljung combines careful mathematics, a practical understanding of real-world applications, and extensive exercises. He introduces both black-box and tailor-made models of linear as well as non-linear systems, and he describes principles, properties, and algorithms for a variety of identification techniques: Nonparametric time-domain and frequency-domain methods. Parameter estimation methods in a general prediction error setting. Frequency domain data and frequency domain interpretations. Asymptotic analysis of parameter estimates. Linear regressions, iterative search methods, and other ways to compute estimates. Recursive (adaptive) estimation techniques. Ljung also presents detailed coverage of the key issues that can make or break system identification projects, such as defining objectives, designing experiments, controlling the bias distribution of transfer-function estimates, and carefully validating the resulting models. The first edition of System Identification has been the field's most widely cited reference for over a decade. This new edition will be the new text of choice for anyone concerned with system identification theory and practice.

Principles of System Identification

Theory and Practice
Author: Arun K. Tangirala
Publisher: CRC Press
ISBN: 143989602X
Category: Technology & Engineering
Page: 908
View: 9849
DOWNLOAD NOW »
Master Techniques and Successfully Build Models Using a Single Resource Vital to all data-driven or measurement-based process operations, system identification is an interface that is based on observational science, and centers on developing mathematical models from observed data. Principles of System Identification: Theory and Practice is an introductory-level book that presents the basic foundations and underlying methods relevant to system identification. The overall scope of the book focuses on system identification with an emphasis on practice, and concentrates most specifically on discrete-time linear system identification. Useful for Both Theory and Practice The book presents the foundational pillars of identification, namely, the theory of discrete-time LTI systems, the basics of signal processing, the theory of random processes, and estimation theory. It explains the core theoretical concepts of building (linear) dynamic models from experimental data, as well as the experimental and practical aspects of identification. The author offers glimpses of modern developments in this area, and provides numerical and simulation-based examples, case studies, end-of-chapter problems, and other ample references to code for illustration and training. Comprising 26 chapters, and ideal for coursework and self-study, this extensive text: Provides the essential concepts of identification Lays down the foundations of mathematical descriptions of systems, random processes, and estimation in the context of identification Discusses the theory pertaining to non-parametric and parametric models for deterministic-plus-stochastic LTI systems in detail Demonstrates the concepts and methods of identification on different case-studies Presents a gradual development of state-space identification and grey-box modeling Offers an overview of advanced topics of identification namely the linear time-varying (LTV), non-linear, and closed-loop identification Discusses a multivariable approach to identification using the iterative principal component analysis Embeds MATLAB® codes for illustrated examples in the text at the respective points Principles of System Identification: Theory and Practice presents a formal base in LTI deterministic and stochastic systems modeling and estimation theory; it is a one-stop reference for introductory to moderately advanced courses on system identification, as well as introductory courses on stochastic signal processing or time-series analysis.

Mastering System Identification in 100 Exercises


Author: Johan Schoukens,Rik Pintelon,Yves Rolain
Publisher: John Wiley & Sons
ISBN: 1118218507
Category: Technology & Engineering
Page: 282
View: 704
DOWNLOAD NOW »
This book enables readers to understand system identification and linear system modeling through 100 practical exercises without requiring complex theoretical knowledge. The contents encompass state-of-the-art system identification methods, with both time and frequency domain system identification methods covered, including the pros and cons of each. Each chapter features MATLAB exercises, discussions of the exercises, accompanying MATLAB downloads, and larger projects that serve as potential assignments in this learn-by-doing resource.

Applied System Identification


Author: Jer-Nan Juang
Publisher: N.A
ISBN: 9780130792112
Category: Technology & Engineering
Page: 394
View: 7879
DOWNLOAD NOW »
Effective system identification includes the underlying methodologies, computational procedures, and their implementation. To this end, this volume presents readers with the mathematical background required to participate in the growing field of system identification as applied to engineering systems. Author Jer-Nan Juang provides a common basis for understanding the techniques developed under various disciplines. In addition, he attempts to bring the discipline of system identification up to date. Specifically Applied System Identification: provides an overview of the disciplines of modal testing used in structural engineering and system identification; presents time- and frequency-domain models used in the disciplines of structures and controls; identifies basic concepts and properties of the frequency response function; features a unified mathematical framework based on the theory of system realization to correlate some of the existing time-domain methods commonly used in modal testing; introduces readers to a new way of interpreting the input/output relationship via an observer for identification of a system model and its corresponding observer to characterize system uncertainties; proposes a simple, yet effective way of curve-fitting the frequency response data and of constructing a system model via matrix-fraction description methods; considers the identification problem of a system operating in closed-loop with an existing feedback controller; develops a unified mathematical framework to derive recursive algorithms for the fast transversal filter and the least-squares lattice filter. Whether used as a textbook or as an addition to your personal reference library, Applied System Identification offers an ideal opportunity to build a bridge between the disciplines of system identification as applied to controls and to modal testing.

Modeling of Dynamic Systems


Author: Lennart Ljung,Torkel Glad
Publisher: Prentice Hall
ISBN: 9780135970973
Category: Science
Page: 361
View: 7841
DOWNLOAD NOW »
Written by a recognized authority in the field of identification and control, this book draws together into a single volume the important aspects of system identification AND physical modelling. KEY TOPICS: Explores techniques used to construct mathematical models of systems based on knowledge from physics, chemistry, biology, etc. (e.g., techniques with so called bond-graphs, as well those which use computer algebra for the modeling work). Explains system identification techniques used to infer knowledge about the behavior of dynamic systems based on observations of the various input and output signals that are available for measurement. Shows how both types of techniques need to be applied in any given practical modeling situation. Considers applications, primarily simulation. For practicing engineers who are faced with problems of modeling.

System Identification

An Introduction
Author: Karel J. Keesman
Publisher: Springer Science & Business Media
ISBN: 9780857295224
Category: Technology & Engineering
Page: 323
View: 7900
DOWNLOAD NOW »
System Identification shows the student reader how to approach the system identification problem in a systematic fashion. The process is divided into three basic steps: experimental design and data collection; model structure selection and parameter estimation; and model validation, each of which is the subject of one or more parts of the text. Following an introduction on system theory, particularly in relation to model representation and model properties, the book contains four parts covering: • data-based identification – non-parametric methods for use when prior system knowledge is very limited; • time-invariant identification for systems with constant parameters; • time-varying systems identification, primarily with recursive estimation techniques; and • model validation methods. A fifth part, composed of appendices, covers the various aspects of the underlying mathematics needed to begin using the text. The book uses essentially semi-physical or gray-box modeling methods although data-based, transfer-function system descriptions are also introduced. The approach is problem-based rather than rigorously mathematical. The use of finite input–output data is demonstrated for frequency- and time-domain identification in static, dynamic, linear, nonlinear, time-invariant and time-varying systems. Simple examples are used to show readers how to perform and emulate the identification steps involved in various control design methods with more complex illustrations derived from real physical, chemical and biological applications being used to demonstrate the practical applicability of the methods described. End-of-chapter exercises (for which a downloadable instructors’ Solutions Manual is available from fill in URL here) will both help students to assimilate what they have learned and make the book suitable for self-tuition by practitioners looking to brush up on modern techniques. Graduate and final-year undergraduate students will find this text to be a practical and realistic course in system identification that can be used for assessing the processes of a variety of engineering disciplines. System Identification will help academic instructors teaching control-related to give their students a good understanding of identification methods that can be used in the real world without the encumbrance of undue mathematical detail.

System Identification


Author: T. S. Soderstrom,Petre G. Stoica
Publisher: N.A
ISBN: N.A
Category: Technology & Engineering
Page: 612
View: 5129
DOWNLOAD NOW »


Signal Analysis and Prediction


Author: Ales Prochazka,N.G. Kingsbury,P.J.W. Payner,J. Uhlir
Publisher: Springer Science & Business Media
ISBN: 1461217687
Category: Technology & Engineering
Page: 502
View: 3797
DOWNLOAD NOW »
Methods of signal analysis represent a broad research topic with applications in many disciplines, including engineering, technology, biomedicine, seismography, eco nometrics, and many others based upon the processing of observed variables. Even though these applications are widely different, the mathematical background be hind them is similar and includes the use of the discrete Fourier transform and z-transform for signal analysis, and both linear and non-linear methods for signal identification, modelling, prediction, segmentation, and classification. These meth ods are in many cases closely related to optimization problems, statistical methods, and artificial neural networks. This book incorporates a collection of research papers based upon selected contri butions presented at the First European Conference on Signal Analysis and Predic tion (ECSAP-97) in Prague, Czech Republic, held June 24-27, 1997 at the Strahov Monastery. Even though the Conference was intended as a European Conference, at first initiated by the European Association for Signal Processing (EURASIP), it was very gratifying that it also drew significant support from other important scientific societies, including the lEE, Signal Processing Society of IEEE, and the Acoustical Society of America. The organizing committee was pleased that the re sponse from the academic community to participate at this Conference was very large; 128 summaries written by 242 authors from 36 countries were received. In addition, the Conference qualified under the Continuing Professional Development Scheme to provide PD units for participants and contributors.

Web Security, Privacy & Commerce


Author: Simson Garfinkel,Gene Spafford
Publisher: "O'Reilly Media, Inc."
ISBN: 0596000456
Category: Computers
Page: 756
View: 2615
DOWNLOAD NOW »
"Web Security, Privacy & Commerce" cuts through the hype and the front page stories. It tells readers what the real risks are and explains how to minimize them. Whether a casual (but concerned) Web surfer or a system administrator responsible for the security of a critical Web server, this book will tells users what they need to know.

Probability and Statistics for Computer Scientists, Second Edition


Author: Michael Baron
Publisher: CRC Press
ISBN: 1498760600
Category: Mathematics
Page: 449
View: 1704
DOWNLOAD NOW »
Student-Friendly Coverage of Probability, Statistical Methods, Simulation, and Modeling Tools Incorporating feedback from instructors and researchers who used the previous edition, Probability and Statistics for Computer Scientists, Second Edition helps students understand general methods of stochastic modeling, simulation, and data analysis; make optimal decisions under uncertainty; model and evaluate computer systems and networks; and prepare for advanced probability-based courses. Written in a lively style with simple language, this classroom-tested book can now be used in both one- and two-semester courses. New to the Second Edition Axiomatic introduction of probability Expanded coverage of statistical inference, including standard errors of estimates and their estimation, inference about variances, chi-square tests for independence and goodness of fit, nonparametric statistics, and bootstrap More exercises at the end of each chapter Additional MATLAB® codes, particularly new commands of the Statistics Toolbox In-Depth yet Accessible Treatment of Computer Science-Related Topics Starting with the fundamentals of probability, the text takes students through topics heavily featured in modern computer science, computer engineering, software engineering, and associated fields, such as computer simulations, Monte Carlo methods, stochastic processes, Markov chains, queuing theory, statistical inference, and regression. It also meets the requirements of the Accreditation Board for Engineering and Technology (ABET). Encourages Practical Implementation of Skills Using simple MATLAB commands (easily translatable to other computer languages), the book provides short programs for implementing the methods of probability and statistics as well as for visualizing randomness, the behavior of random variables and stochastic processes, convergence results, and Monte Carlo simulations. Preliminary knowledge of MATLAB is not required. Along with numerous computer science applications and worked examples, the text presents interesting facts and paradoxical statements. Each chapter concludes with a short summary and many exercises.

Handbook of Multisensor Data Fusion

Theory and Practice, Second Edition
Author: Martin Liggins II,David Hall,James Llinas
Publisher: CRC Press
ISBN: 1351835378
Category: Technology & Engineering
Page: 870
View: 7016
DOWNLOAD NOW »
In the years since the bestselling first edition, fusion research and applications have adapted to service-oriented architectures and pushed the boundaries of situational modeling in human behavior, expanding into fields such as chemical and biological sensing, crisis management, and intelligent buildings. Handbook of Multisensor Data Fusion: Theory and Practice, Second Edition represents the most current concepts and theory as information fusion expands into the realm of network-centric architectures. It reflects new developments in distributed and detection fusion, situation and impact awareness in complex applications, and human cognitive concepts. With contributions from the world’s leading fusion experts, this second edition expands to 31 chapters covering the fundamental theory and cutting-edge developments that are driving this field. New to the Second Edition— · Applications in electromagnetic systems and chemical and biological sensors · Army command and combat identification techniques · Techniques for automated reasoning · Advances in Kalman filtering · Fusion in a network centric environment · Service-oriented architecture concepts · Intelligent agents for improved decision making · Commercial off-the-shelf (COTS) software tools From basic information to state-of-the-art theories, this second edition continues to be a unique, comprehensive, and up-to-date resource for data fusion systems designers.

The Theory and Practice of Online Learning


Author: Terry Anderson
Publisher: Athabasca University Press
ISBN: 1897425082
Category: Computers
Page: 472
View: 3830
DOWNLOAD NOW »
Neither an academic tome nor a prescriptive 'how to' guide, The Theory and Practice of Online Learning is an illuminating collection of essays by practitioners and scholars active in the complex field of distance education. Distance education has evolved significantly in its 150 years of existence. For most of this time, it was an individual pursuit defined by infrequent postal communication. But recently, three more developmental generations have emerged, supported by television and radio, teleconferencing, and computer conferencing. The early 21st century has produced a fifth generation, based on autonomous agents and intelligent, database-assisted learning, that has been referred to as Web 2.0. The second edition of "The Theory and Practice of Online Learning" features updates in each chapter, plus four new chapters on current distance education issues such as connectivism and social software innovations.

Fundamentals of Multimedia


Author: Ze-Nian Li,Mark S. Drew,Jiangchuan Liu
Publisher: Springer Science & Business Media
ISBN: 331905290X
Category: Computers
Page: 727
View: 6270
DOWNLOAD NOW »
This textbook introduces the “Fundamentals of Multimedia”, addressing real issues commonly faced in the workplace. The essential concepts are explained in a practical way to enable students to apply their existing skills to address problems in multimedia. Fully revised and updated, this new edition now includes coverage of such topics as 3D TV, social networks, high-efficiency video compression and conferencing, wireless and mobile networks, and their attendant technologies. Features: presents an overview of the key concepts in multimedia, including color science; reviews lossless and lossy compression methods for image, video and audio data; examines the demands placed by multimedia communications on wired and wireless networks; discusses the impact of social media and cloud computing on information sharing and on multimedia content search and retrieval; includes study exercises at the end of each chapter; provides supplementary resources for both students and instructors at an associated website.

Hansen Solubility Parameters

A User's Handbook, Second Edition
Author: Charles M. Hansen
Publisher: CRC Press
ISBN: 9781420006834
Category: Science
Page: 544
View: 4054
DOWNLOAD NOW »
Hansen solubility parameters (HSPs) are used to predict molecular affinities, solubility, and solubility-related phenomena. Revised and updated throughout, Hansen Solubility Parameters: A User's Handbook, Second Edition features the three Hansen solubility parameters for over 1200 chemicals and correlations for over 400 materials including polymers, inorganic salts, and biological materials. To update his groundbreaking handbook with the latest advances and perspectives, Charles M. Hansen has invited five renowned experts to share their work, theories, and practical applications involving HSPs. New discussions include a new statistical thermodynamics approach for confirming existing HSPs and how they fit into other thermodynamic theories for polymer solutions. Entirely new chapters examine the prediction of environmental stress cracking as well as absorption and diffusion in polymers. Highlighting recent findings on interactions with DNA, the treatment of biological materials also includes skin tissue, proteins, natural fibers, and cholesterol. The book also covers the latest applications of HSPs, such as ozone-safe “designer” solvents, protective clothing, drug delivery systems, and petroleum applications. Presenting a comprehensive survey of the theoretical and practical aspects of HSPs, Hansen Solubility Parameters, Second Edition concludes with a detailed discussion on the necessary research, future directions, and potential applications for which HSPs can provide a useful means of prediction in areas such as biological materials, controlled release applications, nanotechnology, and self-assembly.

Practical Grey-box Process Identification

Theory and Applications
Author: Torsten P. Bohlin
Publisher: Springer Science & Business Media
ISBN: 1846284031
Category: Technology & Engineering
Page: 351
View: 8573
DOWNLOAD NOW »
This book reviews the theoretical fundamentals of grey-box identification and puts the spotlight on MoCaVa, a MATLAB-compatible software tool, for facilitating the procedure of effective grey-box identification. It demonstrates the application of MoCaVa using two case studies drawn from the paper and steel industries. In addition, the book answers common questions which will help in building accurate models for systems with unknown inputs.

Aircraft and Rotorcraft System Identification

Engineering Methods with Flight Test Examples
Author: Mark Brian Tischler,Robert K. Remple
Publisher: Amer Inst of Aeronautics &
ISBN: 9781600868207
Category: Technology & Engineering
Page: 761
View: 5155
DOWNLOAD NOW »
Although many books have been written on the theory of system identification, few are available that provide a complete engineering treatment of system identification and how to successfully apply it to flight vehicles. This book presents proven methods, practical guidelines, and real-world flight-test results for a wide range of state-of-the-art flight vehicles, from small uncrewed aerial vehicles (UAVs) to large manned aircraft/rotorcraft.

Spectral Analysis of Signals

The Missing Data Case
Author: Yanwei Wang,Jian Li,Petre Stoica
Publisher: Morgan & Claypool Publishers
ISBN: 1598290010
Category: Technology & Engineering
Page: 102
View: 7376
DOWNLOAD NOW »
Spectral estimation is important in many fields including astronomy, meteorology, seismology, communications, economics, speech analysis, medical imaging, radar, sonar, and underwater acoustics. Most existing spectral estimation algorithms are devised for uniformly sampled complete-data sequences. However, the spectral estimation for data sequences with missing samples is also important in many applications ranging from astronomical time series analysis to synthetic aperture radar imaging with angular diversity. For spectral estimation in the missing-data case, the challenge is how to extend the existing spectral estimation techniques to deal with these missing-data samples. Recently, nonparametric adaptive filtering based techniques have been developed successfully for various missing-data problems. Collectively, these algorithms provide a comprehensive toolset for the missing-data problem based exclusively on the nonparametric adaptive filter-bank approaches, which are robust and accurate, and can provide high resolution and low sidelobes. In this book, we present these algorithms for both one-dimensional and two-dimensional spectral estimation problems.

Basic Guide to System Safety


Author: Jeffrey W. Vincoli
Publisher: John Wiley & Sons
ISBN: 1118904869
Category: Technology & Engineering
Page: 256
View: 8725
DOWNLOAD NOW »
This book provides guidance on including prevention through design concepts within an occupational safety and health management system. Through the application of these concepts, decisions pertaining to occupational hazards and risks can be incorporated into the process of design and redesign of work premises, tools, equipment, machinery, substances, and work processes including their construction, manufacture, use, maintenance, and ultimate disposal or reuse. These techniques provide guidance for a life-cycle assessment and design model that balances environmental and occupational safety and health goals over the life span of a facility, process, or product. The new edition is expanded to include primer information on the use of safety assurance techniques in design and construction.