The Special Theory of Relativity

Foundations, Theory, Verification, Applications
Author: Costas Christodoulides
Publisher: Springer
ISBN: 3319252747
Category: Science
Page: 480
View: 8721
DOWNLOAD NOW »
This book offers a comprehensive, university-level introduction to Einstein’s Special Theory of Relativity. In addition to the purely theoretical aspect, emphasis is also given to its historical development as well as to the experiments that preceded the theory and those performed in order to test its validity.The main body of the book consists of chapters on Relativistic Kinematics and Dynamics and their applications, Optics and Electromagnetism. These could be covered in a one-semester course. A more advanced course might include the subjects examined in the other chapters of the book and its appendices.As a textbook, it has some unique characteristics: It provides detailed proofs of the theorems, offers abundant figures and discusses numerous examples. It also includes a number of problems for readers to solve, the complete solutions of which are given at the end of the book.It is primarily intended for use by university students of physics, mathematics and engineering. However, as the mathematics needed is of an upper-intermediate level, the book will also appeal to a more general readership.

Special Relativity


Author: Valerio Faraoni
Publisher: Springer Science & Business Media
ISBN: 3319011073
Category: Science
Page: 304
View: 5637
DOWNLOAD NOW »
This book offers an essential bridge between college-level introductions and advanced graduate-level books on special relativity. It begins at an elementary level, presenting and discussing the basic concepts normally covered in college-level works, including the Lorentz transformation. Subsequent chapters introduce the four-dimensional worldview implied by the Lorentz transformations, mixing time and space coordinates, before continuing on to the formalism of tensors, a topic usually avoided in lower-level courses. The book’s second half addresses a number of essential points, including the concept of causality; the equivalence between mass and energy, including applications; relativistic optics; and measurements and matter in Minkowski space-time. The closing chapters focus on the energy-momentum tensor of a continuous distribution of mass-energy and its co-variant conservation; angular momentum; a discussion of the scalar field of perfect fluids and the Maxwell field; and general coordinates. Every chapter is supplemented by a section with numerous exercises, allowing readers to practice the theory. These exercises constitute an essential part of the textbook, and the solutions to approximately half of them are provided in the appendix.

Spacetime

Foundations of General Relativity and Differential Geometry
Author: Marcus Kriele
Publisher: Springer Science & Business Media
ISBN: 3540483543
Category: Science
Page: 436
View: 1370
DOWNLOAD NOW »
One of the most of exciting aspects is the general relativity pred- tion of black holes and the Such Big Bang. predictions gained weight the theorems through Penrose. singularity pioneered In various by te- books on theorems general relativity singularity are and then presented used to that black holes exist and that the argue universe started with a To date what has big been is bang. a critical of what lacking analysis these theorems predict-’ We of really give a proof a typical singul- theorem and this ity use theorem to illustrate problems arising through the of possibilities violations" and "causality weak "shell very crossing These singularities". add to the problems weight of view that the point theorems alone singularity are not sufficient to the existence of predict physical singularities. The mathematical theme of the book In order to both solid gain a of and intuition understanding good for any mathematical theory, one,should to realise it as model of try a a fam- iar non-mathematical theories have had concept. Physical an especially the important on of and impact development mathematics, conversely various modern theories physical rather require sophisticated mathem- ics for their formulation. both and mathematics Today, physics are so that it is often difficult complex to master the theories in both very s- in the of jects. However, case differential pseudo-Riemannian geometry or the general relativity between and mathematics relationship physics is and it is therefore especially close, to from interd- possible profit an ciplinary approach.

Foundations of Quantum Mechanics

An Exploration of the Physical Meaning of Quantum Theory
Author: Travis Norsen
Publisher: Springer
ISBN: 3319658670
Category: Science
Page: 310
View: 3848
DOWNLOAD NOW »
Authored by an acclaimed teacher of quantum physics and philosophy, this textbook pays special attention to the aspects that many courses sweep under the carpet. Traditional courses in quantum mechanics teach students how to use the quantum formalism to make calculations. But even the best students - indeed, especially the best students - emerge rather confused about what, exactly, the theory says is going on, physically, in microscopic systems. This supplementary textbook is designed to help such students understand that they are not alone in their confusions (luminaries such as Albert Einstein, Erwin Schroedinger, and John Stewart Bell having shared them), to sharpen their understanding of the most important difficulties associated with interpreting quantum theory in a realistic manner, and to introduce them to the most promising attempts to formulate the theory in a way that is physically clear and coherent. The text is accessible to students with at least one semester of prior exposure to quantum (or "modern") physics and includes over a hundred engaging end-of-chapter "Projects" that make the book suitable for either a traditional classroom or for self-study.

Physics: The Ultimate Adventure


Author: Ross Barrett,Pier Paolo Delsanto,Angelo Tartaglia
Publisher: Springer
ISBN: 3319316915
Category: Science
Page: 218
View: 1800
DOWNLOAD NOW »
This book explains - in simple terms and with almost no mathematics - the physics behind recent and glamorous discoveries in Cosmology, Quantum Mechanics, Elementary Particles (e.g. Higgs bosons) and Complexity Theory. En route it delves into the historical landmarks and revolutions that brought about our current understanding of the universe. The book is written mainly for those with little scientific background, both college students and lay readers alike, who are curious about the world of modern physics. Unsolved problems are highlighted and the philosophical implications of the sometimes astounding modern discoveries are discussed. Along the way the reader gains an insight into the mindset and methodology of a physicist.

3+1 Formalism in General Relativity

Bases of Numerical Relativity
Author: Éric Gourgoulhon
Publisher: Springer
ISBN: 3642245250
Category: Science
Page: 294
View: 7305
DOWNLOAD NOW »
This graduate-level, course-based text is devoted to the 3+1 formalism of general relativity, which also constitutes the theoretical foundations of numerical relativity. The book starts by establishing the mathematical background (differential geometry, hypersurfaces embedded in space-time, foliation of space-time by a family of space-like hypersurfaces), and then turns to the 3+1 decomposition of the Einstein equations, giving rise to the Cauchy problem with constraints, which constitutes the core of 3+1 formalism. The ADM Hamiltonian formulation of general relativity is also introduced at this stage. Finally, the decomposition of the matter and electromagnetic field equations is presented, focusing on the astrophysically relevant cases of a perfect fluid and a perfect conductor (ideal magnetohydrodynamics). The second part of the book introduces more advanced topics: the conformal transformation of the 3-metric on each hypersurface and the corresponding rewriting of the 3+1 Einstein equations, the Isenberg-Wilson-Mathews approximation to general relativity, global quantities associated with asymptotic flatness (ADM mass, linear and angular momentum) and with symmetries (Komar mass and angular momentum). In the last part, the initial data problem is studied, the choice of spacetime coordinates within the 3+1 framework is discussed and various schemes for the time integration of the 3+1 Einstein equations are reviewed. The prerequisites are those of a basic general relativity course with calculations and derivations presented in detail, making this text complete and self-contained. Numerical techniques are not covered in this book.

Physics from Symmetry


Author: Jakob Schwichtenberg
Publisher: Springer
ISBN: 3319666312
Category: Science
Page: 287
View: 5378
DOWNLOAD NOW »
This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations.

Introduction to General Relativity

Solutions to Problems
Author: John Dirk Walecka
Publisher: World Scientific Publishing Company
ISBN: 9813227710
Category:
Page: 216
View: 3941
DOWNLOAD NOW »
It is important for every physicist today to have a working knowledge of Einstein's theory of general relativity. Introduction to General Relativity published in 2007 was aimed at first-year graduate students, or advanced undergraduates, in physics. Only a basic understanding of classical lagrangian mechanics is assumed; beyond that, the reader should find the material to be self-contained. The mechanics problem of a point mass constrained to move without friction on a two-dimensional surface of arbitrary shape serves as a paradigm for the development of the mathematics and physics of general relativity. Special relativity is reviewed. The basic principles of general relativity are then presented, and the most important applications are discussed. The final special topics section takes the reader up to a few areas of current research. An extensive set of accessible problems enhances and extends the coverage. As a learning and teaching tool, this current book provides solutions to those problems. This text and solutions manual are meant to provide an introduction to the subject. It is hoped that these books will allow the reader to approach the more advanced texts and monographs, as well as the continual influx of fascinating new experimental results, with a deeper understanding and sense of appreciation.

Einstein in Matrix Form

Exact Derivation of the Theory of Special and General Relativity without Tensors
Author: Günter Ludyk
Publisher: Springer Science & Business Media
ISBN: 3642357989
Category: Science
Page: 194
View: 4653
DOWNLOAD NOW »
This book is an introduction to the theories of Special and General Relativity. The target audience are physicists, engineers and applied scientists who are looking for an understandable introduction to the topic - without too much new mathematics. The fundamental equations of Einstein's theory of Special and General Relativity are derived using matrix calculus, without the help of tensors. This feature makes the book special and a valuable tool for scientists and engineers with no experience in the field of tensor calculus. In part I the foundations of Special Relativity are developed, part II describes the structure and principle of General Relativity. Part III explains the Schwarzschild solution of spherical body gravity and examines the "Black Hole" phenomenon. Any necessary mathematical tools are user friendly provided, either directly in the text or in the appendices.

Quantum Mechanics and Electrodynamics


Author: Jaroslav Zamastil,Jakub Benda
Publisher: Springer
ISBN: 3319657801
Category: Science
Page: 464
View: 8990
DOWNLOAD NOW »
This book highlights the power and elegance of algebraic methods of solving problems in quantum mechanics. It shows that symmetries not only provide elegant solutions to problems that can be solved exactly, but also substantially simplify problems that must be solved approximately. Furthermore, the book provides an elementary exposition of quantum electrodynamics and its application to low-energy physics, along with a thorough analysis of the role of relativistic, magnetic, and quantum electrodynamic effects in atomic spectroscopy. Included are essential derivations made clear through detailed, transparent calculations. The book’s commitment to deriving advanced results with elementary techniques, as well as its inclusion of exercises will enamor it to advanced undergraduate and graduate students.

Symmetry and the Standard Model

Mathematics and Particle Physics
Author: Matthew Robinson
Publisher: Springer Science & Business Media
ISBN: 1441982671
Category: Science
Page: 327
View: 4215
DOWNLOAD NOW »
While theoretical particle physics is an extraordinarily fascinating field, the incredibly fast pace at which it moves along, combined with the huge amount of background information necessary to perform cutting edge research, poses a formidable challenge for graduate students. This book represents the first in a series designed to assist students in the process of transitioning from coursework to research in particle physics. Rather than reading literally dozens of physics and mathematics texts, trying to assimilate the countless ideas, translate notations and perspectives, and see how it all fits together to get a holistic understanding, this series provides a detailed overview of the major mathematical and physical ideas in theoretical particle physics. Ultimately the ideas will be presented in a unified, consistent, holistic picture, where each topic is built firmly on what has come before, and all topics are related in a clear and intuitive way. This introductory text on quantum field theory and particle physics provides both a self-contained and complete introduction to not only the necessary physical ideas, but also a complete introduction to the necessary mathematical tools. Assuming minimal knowledge of undergraduate physics and mathematics, this book lays both the mathematical and physical groundwork with clear, intuitive explanations and plenty of examples. The book then continues with an exposition of the Standard Model of Particle Physics, the theory that currently seems to explain the universe apart from gravity. Furthermore, this book was written as a primer for the more advanced mathematical and physical ideas to come later in this series.

Particles and Fundamental Interactions

An Introduction to Particle Physics
Author: Sylvie Braibant,Giorgio Giacomelli,Maurizio Spurio
Publisher: Springer Science & Business Media
ISBN: 9400724640
Category: Science
Page: 498
View: 6518
DOWNLOAD NOW »
The book provides theoretical and phenomenological insights on the structure of matter, presenting concepts and features of elementary particle physics and fundamental aspects of nuclear physics. Starting with the basics (nomenclature, classification, acceleration techniques, detection of elementary particles), the properties of fundamental interactions (electromagnetic, weak and strong) are introduced with a mathematical formalism suited to undergraduate students. Some experimental results (the discovery of neutral currents and of the W± and Z0 bosons; the quark structure observed using deep inelastic scattering experiments) show the necessity of an evolution of the formalism. This motivates a more detailed description of the weak and strong interactions, of the Standard Model of the microcosm with its experimental tests, and of the Higgs mechanism. The open problems in the Standard Model of the microcosm and macrocosm are presented at the end of the book.

Meson Theory of Nuclear Forces


Author: Wolfgang Pauli
Publisher: Iyer Press
ISBN: 1406736635
Category: Science
Page: 80
View: 1085
DOWNLOAD NOW »
PREFACE. THE Author of this very practical treatise on Scotch Loch - Fishing desires clearly that it may be of use to all who had it. He does not pretend to have written anything new, but to have attempted to put what he has to say in as readable a form as possible. Everything in the way of the history and habits of fish has been studiously avoided, and technicalities have been used as sparingly as possible. The writing of this book has afforded him pleasure in his leisure moments, and that pleasure would be much increased if he knew that the perusal of it would create any bond of sympathy between himself and the angling community in general. This section is interleaved with blank shects for the readers notes. The Author need hardly say that any suggestions addressed to the case of the publishers, will meet with consideration in a future edition. We do not pretend to write or enlarge upon a new subject. Much has been said and written-and well said and written too on the art of fishing but loch-fishing has been rather looked upon as a second-rate performance, and to dispel this idea is one of the objects for which this present treatise has been written. Far be it from us to say anything against fishing, lawfully practised in any form but many pent up in our large towns will bear us out when me say that, on the whole, a days loch-fishing is the most convenient. One great matter is, that the loch-fisher is depend- ent on nothing but enough wind to curl the water, -and on a large loch it is very seldom that a dead calm prevails all day, -and can make his arrangements for a day, weeks beforehand whereas the stream- fisher is dependent for a good take on the state of the water and however pleasant and easy it may be for one living near the banks of a good trout stream or river, it is quite another matter to arrange for a days river-fishing, if one is looking forward to a holiday at a date some weeks ahead. Providence may favour the expectant angler with a good day, and the water in order but experience has taught most of us that the good days are in the minority, and that, as is the case with our rapid running streams, -such as many of our northern streams are, -the water is either too large or too small, unless, as previously remarked, you live near at hand, and can catch it at its best. A common belief in regard to loch-fishing is, that the tyro and the experienced angler have nearly the same chance in fishing, -the one from the stern and the other from the bow of the same boat. Of all the absurd beliefs as to loch-fishing, this is one of the most absurd. Try it. Give the tyro either end of the boat he likes give him a cast of ally flies he may fancy, or even a cast similar to those which a crack may be using and if he catches one for every three the other has, he may consider himself very lucky. Of course there are lochs where the fish are not abundant, and a beginner may come across as many as an older fisher but we speak of lochs where there are fish to be caught, and where each has a fair chance. Again, it is said that the boatman has as much to do with catching trout in a loch as the angler. Well, we dont deny that. In an untried loch it is necessary to have the guidance of a good boatman but the same argument holds good as to stream-fishing...

A First Course in General Relativity


Author: Bernard Schutz
Publisher: Cambridge University Press
ISBN: 0521887054
Category: Science
Page: 393
View: 633
DOWNLOAD NOW »
Second edition of a widely-used textbook providing the first step into general relativity for undergraduate students with minimal mathematical background.

Essential Astrophysics


Author: Kenneth R. Lang
Publisher: Springer Science & Business Media
ISBN: 3642359639
Category: Science
Page: 635
View: 4555
DOWNLOAD NOW »
Essential Astrophysics is a book to learn or teach from, as well as a fundamental reference volume for anyone interested in astronomy and astrophysics. It presents astrophysics from basic principles without requiring any previous study of astronomy or astrophysics. It serves as a comprehensive introductory text, which takes the student through the field of astrophysics in lecture-sized chapters of basic physical principles applied to the cosmos. This one-semester overview will be enjoyed by undergraduate students with an interest in the physical sciences, such as astronomy, chemistry, engineering or physics, as well as by any curious student interested in learning about our celestial science. The mathematics required for understanding the text is on the level of simple algebra, for that is all that is needed to describe the fundamental principles. The text is of sufficient breadth and depth to prepare the interested student for more advanced specialised courses in the future. Astronomical examples are provided throughout the text, to reinforce the basic concepts and physics, and to demonstrate the use of the relevant formulae. In this way, the student learns to apply the fundamental equations and principles to cosmic objects and situations. Astronomical and physical constants and units as well as the most fundamental equations can be found in the appendix. Essential Astrophysics goes beyond the typical textbook by including references to the seminal papers in the field, with further reference to recent applications, results, or specialised literature.

From Special Relativity to Feynman Diagrams

A Course in Theoretical Particle Physics for Beginners
Author: Riccardo D'Auria,Mario Trigiante
Publisher: Springer
ISBN: 3319220144
Category: Science
Page: 601
View: 810
DOWNLOAD NOW »
This book, now in its second edition, provides an introductory course on theoretical particle physics with the aim of filling the gap that exists between basic courses of classical and quantum mechanics and advanced courses of (relativistic) quantum mechanics and field theory. After a concise but comprehensive introduction to special relativity, key aspects of relativistic dynamics are covered and some elementary concepts of general relativity introduced. Basics of the theory of groups and Lie algebras are explained, with discussion of the group of rotations and the Lorentz and Poincaré groups. In addition, a concise account of representation theory and of tensor calculus is provided. Quantization of the electromagnetic field in the radiation range is fully discussed. The essentials of the Lagrangian and Hamiltonian formalisms are reviewed, proceeding from systems with a finite number of degrees of freedom and extending the discussion to fields. The final four chapters are devoted to development of the quantum field theory, ultimately introducing the graphical description of interaction processes by means of Feynman diagrams. The book will be of value for students seeking to understand the main concepts that form the basis of contemporary theoretical particle physics and also for engineers and lecturers. An Appendix on some special relativity effects is added.

Theory of Gravitational Interactions


Author: Maurizio Gasperini
Publisher: Springer
ISBN: 3319496824
Category: Science
Page: 373
View: 4093
DOWNLOAD NOW »
This is the second edition of a well-received book that is a modern, self-contained introduction to the theory of gravitational interactions. The new edition includes more details on gravitational waves of cosmological origin, the so-called brane world scenario, and gravitational time-delay effects.The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field, while the second, more advanced part discusses the deep analogies (and differences) between a geometric theory of gravity and the gauge theories of the other fundamental interactions. This fills a gap within the traditional approach to general relativity which usually leaves students puzzled about the role of gravity. The required notions of differential geometry are reduced to the minimum, allowing room for aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational interactions of spinors, and the supersymmetric and higher-dimensional generalization of the Einstein equations. This textbook is primarily intended for students pursuing a theoretical or astroparticle curriculum but is also relevant for PhD students and young researchers.

A Student's Manual for A First Course in General Relativity


Author: N.A
Publisher: N.A
ISBN: 1107037913
Category:
Page: N.A
View: 7650
DOWNLOAD NOW »


Neoclassical Physics


Author: Mark A. Cunningham
Publisher: Springer
ISBN: 3319106473
Category: Science
Page: 375
View: 4899
DOWNLOAD NOW »
In this introductory text, physics concepts are introduced as a means of understanding experimental observations, not as a sequential list of facts to be memorized. The book is structured around the key scientific discoveries that led to much of our current understanding of the universe. Numerous exercises are provided that utilize Mathematica software to help students explore how the language of mathematics is used to describe physical phenomena. Topics requiring quantum mechanics for a more complete explanation are identified but not pursued. In a departure from the traditional methodology and subject matter used in introductory physics texts, this is organized in a manner that will facilitate a guided discovery style of instruction. Students will obtain much more detailed information about fewer topics and will also gain proficiency with Mathematica, a powerful tool with many potential uses in subsequent courses.

A Most Incomprehensible Thing

Notes Towards a Very Gentle Introduction to the Mathematics of Relativity
Author: Peter Collier
Publisher: Incomprehensible Books
ISBN: 0957389469
Category: Science
Page: 274
View: 1379
DOWNLOAD NOW »
A clear and enjoyable guide to the mathematics of relativity To really understand relativity – one of the cornerstones of modern physics – you have to get to grips with the mathematics. This user-friendly self-study guide is aimed at the general reader who is motivated to tackle that not insignificant challenge. The book is written using straightforward and accessible language, with clear derivations and explanations as well as numerous fully solved problems. For those with minimal mathematical background, the first chapter provides a crash course in foundation mathematics. The reader is then taken gently by the hand and guided through a wide range of fundamental topics, including Newtonian mechanics; the Lorentz transformations; tensor calculus; the Einstein field equations; the Schwarzschild solution (which gives a good approximation of the spacetime of our Solar System); simple black holes and relativistic cosmology. Following the historic 2015 LIGO (Laser Interferometer Gravitational-Wave Observatory) detection, there is now an additional chapter on gravitational waves, ripples in the fabric of spacetime that potentially provide a revolutionary new way to study the universe. Special relativity helps explain a huge range of non-gravitational physical phenomena and has some strangely counter-intuitive consequences. These include time dilation, length contraction, the relativity of simultaneity, mass-energy equivalence and an absolute speed limit. General relativity, the leading theory of gravity, is at the heart of our understanding of cosmology and black holes. Understand even the basics of Einstein's amazing theory and the world will never seem the same again. March 2017. This third edition has been revised to make the material even more accessible to the enthusiastic general reader who seeks to understand the mathematics of relativity.