## Advanced Calculus

*A Geometric View*

**Author**: James J. Callahan

**Publisher:**Springer Science & Business Media

**ISBN:**9781441973320

**Category:**Mathematics

**Page:**526

**View:**6934

**DOWNLOAD NOW »**

With a fresh geometric approach that incorporates more than 250 illustrations, this textbook sets itself apart from all others in advanced calculus. Besides the classical capstones--the change of variables formula, implicit and inverse function theorems, the integral theorems of Gauss and Stokes--the text treats other important topics in differential analysis, such as Morse's lemma and the Poincaré lemma. The ideas behind most topics can be understood with just two or three variables. The book incorporates modern computational tools to give visualization real power. Using 2D and 3D graphics, the book offers new insights into fundamental elements of the calculus of differentiable maps. The geometric theme continues with an analysis of the physical meaning of the divergence and the curl at a level of detail not found in other advanced calculus books. This is a textbook for undergraduates and graduate students in mathematics, the physical sciences, and economics. Prerequisites are an introduction to linear algebra and multivariable calculus. There is enough material for a year-long course on advanced calculus and for a variety of semester courses--including topics in geometry. The measured pace of the book, with its extensive examples and illustrations, make it especially suitable for independent study.

## Several Real Variables

**Author**: Shmuel Kantorovitz

**Publisher:**Springer

**ISBN:**3319279564

**Category:**Mathematics

**Page:**307

**View:**2700

**DOWNLOAD NOW »**

This undergraduate textbook is based on lectures given by the author on the differential and integral calculus of functions of several real variables. The book has a modern approach and includes topics such as: •The p-norms on vector space and their equivalence •The Weierstrass and Stone-Weierstrass approximation theorems •The differential as a linear functional; Jacobians, Hessians, and Taylor's theorem in several variables •The Implicit Function Theorem for a system of equations, proved via Banach’s Fixed Point Theorem •Applications to Ordinary Differential Equations •Line integrals and an introduction to surface integrals This book features numerous examples, detailed proofs, as well as exercises at the end of sections. Many of the exercises have detailed solutions, making the book suitable for self-study. Several Real Variables will be useful for undergraduate students in mathematics who have completed first courses in linear algebra and analysis of one real variable.

## Advanced Calculus

**Author**: Patrick Fitzpatrick

**Publisher:**American Mathematical Soc.

**ISBN:**9780821847916

**Category:**Mathematics

**Page:**590

**View:**6728

**DOWNLOAD NOW »**

Advanced Calculus is intended as a text for courses that furnish the backbone of the student's undergraduate education in mathematical analysis. The goal is to rigorously present the fundamental concepts within the context of illuminating examples and stimulating exercises. This book is self-contained and starts with the creation of basic tools using the completeness axiom. The continuity, differentiability, integrability, and power series representation properties of functions of a single variable are established. The next few chapters describe the topological and metric properties of Euclidean space. These are the basis of a rigorous treatment of differential calculus (including the Implicit Function Theorem and Lagrange Multipliers) for mappings between Euclidean spaces and integration for functions of several real variables. Special attention has been paid to the motivation for proofs. Selected topics, such as the Picard Existence Theorem for differential equations, have been included in such a way that selections may be made while preserving a fluid presentation of the essential material. Supplemented with numerous exercises, Advanced Calculus is a perfect book for undergraduate students of analysis.

## Elementare Differentialgeometrie

**Author**: Christian Bär

**Publisher:**Walter de Gruyter

**ISBN:**3110224593

**Category:**Mathematics

**Page:**356

**View:**6986

**DOWNLOAD NOW »**

This textbook presents an introduction to the differential geometry of curves and surfaces. This second, revised edition has been expanded to include solutions and applications in cartography. Topics include Euclidean geometry, curve theory, surface theory, curvature concepts, minimal surfaces, Riemann geometry and the Gauss-Bonnet theorem.

## Angewandte Mathematik: Body and Soul

*Band 1: Ableitungen und Geometrie in IR3*

**Author**: Kenneth Eriksson,Donald Estep,Claes Johnson

**Publisher:**Springer-Verlag

**ISBN:**3540350063

**Category:**Mathematics

**Page:**452

**View:**9773

**DOWNLOAD NOW »**

Der 3-bändige Grundkurs für Studienanfänger verbindet die mathematische Analysis (Soul) mit numerischer Berechnung (Body) und einer Fülle von Anwendungen. Die Autoren haben die Inhalte im Unterricht erprobt. Band 1 behandelt die Grundlagen der Analysis.

## First Steps in Differential Geometry

*Riemannian, Contact, Symplectic*

**Author**: Andrew McInerney

**Publisher:**Springer Science & Business Media

**ISBN:**1461477328

**Category:**Mathematics

**Page:**410

**View:**3482

**DOWNLOAD NOW »**

Differential geometry arguably offers the smoothest transition from the standard university mathematics sequence of the first four semesters in calculus, linear algebra, and differential equations to the higher levels of abstraction and proof encountered at the upper division by mathematics majors. Today it is possible to describe differential geometry as "the study of structures on the tangent space," and this text develops this point of view. This book, unlike other introductory texts in differential geometry, develops the architecture necessary to introduce symplectic and contact geometry alongside its Riemannian cousin. The main goal of this book is to bring the undergraduate student who already has a solid foundation in the standard mathematics curriculum into contact with the beauty of higher mathematics. In particular, the presentation here emphasizes the consequences of a definition and the careful use of examples and constructions in order to explore those consequences.

## Numbers and Geometry

**Author**: John Stillwell

**Publisher:**Springer Science & Business Media

**ISBN:**9780387982892

**Category:**Mathematics

**Page:**343

**View:**6035

**DOWNLOAD NOW »**

A beautiful and relatively elementary account of a part of mathematics where three main fields - algebra, analysis and geometry - meet. The book provides a broad view of these subjects at the level of calculus, without being a calculus book. Its roots are in arithmetic and geometry, the two opposite poles of mathematics, and the source of historic conceptual conflict. The resolution of this conflict, and its role in the development of mathematics, is one of the main stories in the book. Stillwell has chosen an array of exciting and worthwhile topics and elegantly combines mathematical history with mathematics. He covers the main ideas of Euclid, but with 2000 years of extra insights attached. Presupposing only high school algebra, it can be read by any well prepared student entering university. Moreover, this book will be popular with graduate students and researchers in mathematics due to its attractive and unusual treatment of fundamental topics. A set of well-written exercises at the end of each section allows new ideas to be instantly tested and reinforced.

## Differentialgeometrie von Kurven und Flächen

**Author**: Manfredo P. do Carmo

**Publisher:**Springer-Verlag

**ISBN:**3322850722

**Category:**Technology & Engineering

**Page:**263

**View:**8411

**DOWNLOAD NOW »**

Inhalt: Kurven - Reguläre Flächen - Die Geometrie der Gauß-Abbildung - Die innere Geometrie von Flächen - Anhang

## Differentialgeometrie

*Kurven - Flächen - Mannigfaltigkeiten*

**Author**: Wolfgang Kühnel

**Publisher:**Springer-Verlag

**ISBN:**3834896551

**Category:**Mathematics

**Page:**280

**View:**2537

**DOWNLOAD NOW »**

Dieses Buch ist eine Einführung in die Differentialgeometrie. Zunächst geht es um die klassischen Aspekte wie die Geometrie von Kurven und Flächen, bevor dann höherdimensionale Flächen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapitel "Die innere Geometrie von Flächen". Dieses führt den Leser bis hin zu dem berühmten Satz von Gauß-Bonnet, der ein entscheidendes Bindeglied zwischen lokaler und globaler Geometrie darstellt. Die zweite Hälfte des Buches ist der Riemannschen Geometrie gewidmet. Den Abschluss bildet ein Kapitel über "Einstein-Räume", die eine große Bedeutung sowohl in der "Reinen Mathematik" als auch in der Allgemeinen Relativitätstheorie von A. Einstein haben. Es wird großer Wert auf Anschaulichkeit gelegt, was durch zahlreiche Abbildungen unterstützt wird. Im Laufe der Neuauflagen wurde der Text erweitert, neue Aufgaben wurden hinzugefügt und am Ende des Buches wurden zusätzliche Hinweise zur Lösung der Übungsaufgaben ergänzt. Der Text wurde für die fünfte Auflage gründlich durchgesehen und an einigen Stellen verbessert.

## Short Calculus

*The Original Edition of “A First Course in Calculus”*

**Author**: Serge Lang

**Publisher:**Springer Science & Business Media

**ISBN:**9780387953274

**Category:**Mathematics

**Page:**260

**View:**6000

**DOWNLOAD NOW »**

From the reviews "This is a reprint of the original edition of Lang’s ‘A First Course in Calculus’, which was first published in 1964....The treatment is ‘as rigorous as any mathematician would wish it’....[The exercises] are refreshingly simply stated, without any extraneous verbiage, and at times quite challenging....There are answers to all the exercises set and some supplementary problems on each topic to tax even the most able." --Mathematical Gazette

## A Course in Advanced Calculus

**Author**: Robert S. Borden

**Publisher:**Courier Corporation

**ISBN:**9780486672908

**Category:**Mathematics

**Page:**402

**View:**608

**DOWNLOAD NOW »**

An excellent undergraduate text examines sets and structures, limit and continuity in En, measure and integration, differentiable mappings, sequences and series, applications of improper integrals, more. Problems with tips and solutions for some.

## A Course in Multivariable Calculus and Analysis

**Author**: Sudhir R. Ghorpade,Balmohan V. Limaye

**Publisher:**Springer Science & Business Media

**ISBN:**1441916210

**Category:**Mathematics

**Page:**475

**View:**2057

**DOWNLOAD NOW »**

This self-contained textbook gives a thorough exposition of multivariable calculus. The emphasis is on correlating general concepts and results of multivariable calculus with their counterparts in one-variable calculus. Further, the book includes genuine analogues of basic results in one-variable calculus, such as the mean value theorem and the fundamental theorem of calculus. This book is distinguished from others on the subject: it examines topics not typically covered, such as monotonicity, bimonotonicity, and convexity, together with their relation to partial differentiation, cubature rules for approximate evaluation of double integrals, and conditional as well as unconditional convergence of double series and improper double integrals. Each chapter contains detailed proofs of relevant results, along with numerous examples and a wide collection of exercises of varying degrees of difficulty, making the book useful to undergraduate and graduate students alike.

## Elementary Topics in Differential Geometry

**Author**: John A. Thorpe

**Publisher:**Springer Science & Business Media

**ISBN:**9780387903576

**Category:**Mathematics

**Page:**256

**View:**9281

**DOWNLOAD NOW »**

In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of ~3. The student's preliminary understanding of higher dimensions is not cultivated.

## A Geometric Approach to Differential Forms

**Author**: David Bachman

**Publisher:**Springer Science & Business Media

**ISBN:**0817683046

**Category:**Mathematics

**Page:**156

**View:**8553

**DOWNLOAD NOW »**

This text presents differential forms from a geometric perspective accessible at the undergraduate level. It begins with basic concepts such as partial differentiation and multiple integration and gently develops the entire machinery of differential forms. The subject is approached with the idea that complex concepts can be built up by analogy from simpler cases, which, being inherently geometric, often can be best understood visually. Each new concept is presented with a natural picture that students can easily grasp. Algebraic properties then follow. The book contains excellent motivation, numerous illustrations and solutions to selected problems.

## Mathematics and Its History

**Author**: John Stillwell

**Publisher:**Springer Science & Business Media

**ISBN:**144196052X

**Category:**Mathematics

**Page:**662

**View:**8152

**DOWNLOAD NOW »**

From a review of the second edition: "This book covers many interesting topics not usually covered in a present day undergraduate course, as well as certain basic topics such as the development of the calculus and the solution of polynomial equations. The fact that the topics are introduced in their historical contexts will enable students to better appreciate and understand the mathematical ideas involved...If one constructs a list of topics central to a history course, then they would closely resemble those chosen here." (David Parrott, Australian Mathematical Society) This book offers a collection of historical essays detailing a large variety of mathematical disciplines and issues; it’s accessible to a broad audience. This third edition includes new chapters on simple groups and new sections on alternating groups and the Poincare conjecture. Many more exercises have been added as well as commentary that helps place the exercises in context.

## A First Course in Calculus

**Author**: Serge Lang

**Publisher:**Springer Science & Business Media

**ISBN:**9780387962016

**Category:**Mathematics

**Page:**731

**View:**9249

**DOWNLOAD NOW »**

This fifth edition of Lang's book covers all the topics traditionally taught in the first-year calculus sequence. Divided into five parts, each section of A FIRST COURSE IN CALCULUS contains examples and applications relating to the topic covered. In addition, the rear of the book contains detailed solutions to a large number of the exercises, allowing them to be used as worked-out examples -- one of the main improvements over previous editions.

## Curvature in Mathematics and Physics

**Author**: Shlomo Sternberg

**Publisher:**Courier Corporation

**ISBN:**0486292711

**Category:**Mathematics

**Page:**416

**View:**6660

**DOWNLOAD NOW »**

Expert treatment introduces semi-Riemannian geometry and its principal physical application, Einstein's theory of general relativity, using the Cartan exterior calculus as a principal tool. Prerequisites include linear algebra and advanced calculus. 2012 edition.

## A Brief on Tensor Analysis

**Author**: James G. Simmonds

**Publisher:**Springer Science & Business Media

**ISBN:**9780387940885

**Category:**Mathematics

**Page:**114

**View:**650

**DOWNLOAD NOW »**

In this text which gradually develops the tools for formulating and manipulating the field equations of Continuum Mechanics, the mathematics of tensor analysis is introduced in four, well-separated stages, and the physical interpretation and application of vectors and tensors are stressed throughout. This new edition contains more exercises. In addition, the author has appended a section on Differential Geometry.

## A Course in Calculus and Real Analysis

**Author**: Sudhir R. Ghorpade,Balmohan V. Limaye

**Publisher:**Springer Science & Business Media

**ISBN:**0387305300

**Category:**Mathematics

**Page:**432

**View:**817

**DOWNLOAD NOW »**

This book provides a self-contained and rigorous introduction to calculus of functions of one variable, in a presentation which emphasizes the structural development of calculus. Throughout, the authors highlight the fact that calculus provides a firm foundation to concepts and results that are generally encountered in high school and accepted on faith; for example, the classical result that the ratio of circumference to diameter is the same for all circles. A number of topics are treated here in considerable detail that may be inadequately covered in calculus courses and glossed over in real analysis courses.

## Einführung in die Komplexe Analysis

*Elemente der Funktionentheorie*

**Author**: Wolfgang Fischer,Ingo Lieb

**Publisher:**Springer-Verlag

**ISBN:**3834893773

**Category:**Mathematics

**Page:**214

**View:**8004

**DOWNLOAD NOW »**

In den Bachelor-Studiengängen der Mathematik steht für die Komplexe Analysis (Funktionentheorie) oft nur eine einsemestrige 2-stündige Vorlesung zur Verfügung. Dieses Buch eignet sich als Grundlage für eine solche Vorlesung im 2. Studienjahr. Mit einer guten thematischen Auswahl, vielen Beispielen und ausführlichen Erläuterungen gibt dieses Buch eine Darstellung der Komplexen Analysis, die genau die Grundlagen und den wesentlichen Kernbestand dieses Gebietes enthält. Das Buch bietet über diese Grundausbildung hinaus weiteres Lehrmaterial als Ergänzung, sodass es auch für eine 3- oder 4 –stündige Vorlesung geeignet ist. Je nach Hörerkreis kann der Stoff unterschiedlich erweitert werden. So wurden für den „Bachelor Lehramt“ die geometrischen Aspekte der Komplexen Analysis besonders herausgearbeitet.