Chromatin Readers in Health and Disease

Chromatin Readers in Health and Disease, Volume 35, a new release in the Translational Epigenetics series, gathers and makes actionable our current understanding of how chromatin readers regulate access to genetic information, and how their ...

Author: Olivier Binda

Publisher: Academic Press

ISBN: 0128233761

Category: Medical

Page: 416

View: 369

Download →

Chromatin Readers in Health and Disease, Volume 32, a new release in the Translational Epigenetics series, gathers and makes actionable our current understanding of how chromatin readers regulate access to genetic information, and how their aberrant regulation can contribute to human pathologies. Chromatin readers discussed include 14-3-3 Dinshaw, ADD, Ankyrin, BAH, BET, BIR, BRCT, bromodomains and Kac readers, chromodomains and chromobarrel readers, citrullination readers, macrodomains and poly-ADP-ribose readers, MBT, PHD and double PHD, PWWP, SUMO (H4K12) readers, Tudor and TTD, UDR and ubiquitin, WD40, YEATS (crotonyl reader)?, MBD, SRA, and Methyl-RNA readers. In the book, more than a dozen leaders in the field examine a range of protein readers, their relationship to human disease, and the early therapeutics that act as chromatin signaling factors to treat cancers and Huntington's disease, among other disorders. Enables researchers and clinicians to understand chromatin signaling mechanisms that regulate gene expression through chromatin readers Highlights the role of chromatin readers in a variety of human pathologies, as well as early therapeutics that act on chromatin signaling Includes chapter contributions from international leaders in the field
Posted in:

Chromatin and Disease

The book contains up-to-date information about the chromatin structure and chromatin related diseases and drug functions. This work is the first endeavor to present different aspects encompassing the above theme.

Author: Tapas K. Kundu

Publisher: Springer Science & Business Media

ISBN: 9781402054662

Category: Science

Page: 458

View: 645

Download →

This book includes a collection of articles with the broad theme of disease connection to chromatin structure and function. It elaborates on the molecular pharmacology of the drugs targeting chromatin structure and its components. The book contains up-to-date information about the chromatin structure and chromatin related diseases and drug functions. This work is the first endeavor to present different aspects encompassing the above theme.
Posted in:

Epigenetics in Cardiac Disease

This book describes important advances in our understanding of how environmental conditions affect cardiac gene expression through epigenetic mechanisms.

Author: Johannes Backs

Publisher: Springer

ISBN: 9783319414577

Category: Medical

Page: 316

View: 638

Download →

This book describes important advances in our understanding of how environmental conditions affect cardiac gene expression through epigenetic mechanisms. Further, it discusses the roles of chromatin modifications (in particular DNA methylation and histone modifications) and of chromatin regulators in the context of cardiac diseases. The book provides readers with an overview of our current understanding of epigenetic regulation in the heart, and will stimulate further research in this exciting field. Edited and written by internationally respected experts, it addresses the needs of professors, students and researchers working in the fields of cardiac biology and epigenetics.
Posted in:

Chromatin Signaling and Neurological Disorders

Chromatin Signaling and Neurological Disorders, Volume Seven, explores our current understanding of how chromatin signaling regulates access to genetic information, and how their aberrant regulation can contribute to neurological disorders.

Author:

Publisher: Academic Press

ISBN: 9780128137970

Category: Medical

Page: 378

View: 558

Download →

Chromatin Signaling and Neurological Disorders, Volume Seven, explores our current understanding of how chromatin signaling regulates access to genetic information, and how their aberrant regulation can contribute to neurological disorders. Researchers, students and clinicians will not only gain a strong grounding on the relationship between chromatin signaling and neurological disorders, but they'll also discover approaches to better interpret and employ new diagnostic studies and epigenetic-based therapies. A diverse range of chapters from international experts speaks to the basis of chromatin and epigenetic signaling pathways and specific chromatin signaling factors that regulate a range of diseases. In addition to the basic science of chromatin signaling factors, each disease-specific chapter speaks to the translational or clinical significance of recent findings, along with important implications for the development of epigenetics-based therapeutics. Common themes of translational significance are also identified across disease types, as well as the future potential of chromatin signaling research. Examines specific chromatin signaling factors that regulate spinal muscular atrophy, ulbospinal muscular atrophy, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, multiple sclerosis, Angelman syndrome, Rader-Willi syndrome, and more Contains chapter contributions from international experts who speak to the clinical significance of recent findings and the implications for the development of epigenetics-based therapeutics Provides researchers, students and clinicians with approaches to better interpret and employ new diagnostic studies for treating neurological disorders
Posted in:

Chromatin Signaling and Diseases

The addition and removal of chemical modifications on histones, as well as the proteins that specifically recognize these, is reviewed in Chromatin Signaling and Diseases.

Author: Olivier Binda

Publisher: Academic Press

ISBN: 9780128026090

Category: Science

Page: 466

View: 125

Download →

Chromatin Signaling and Diseases covers the molecular mechanisms that regulate gene expression, which govern everything from embryonic development, growth, and human pathologies associated with aging, such as cancer. This book helps researchers learn about or keep up with the quickly expanding field of chromatin signaling. After reading this book, clinicians will be more capable of explaining the mechanisms of gene expression regulation to their patients to reassure them about new drug developments that target chromatin signaling mechanisms. For example, several epigenetic drugs that act on chromatin signaling factors are in clinical trials or even approved for usage in cancer treatments, Alzheimer's, and Huntington's diseases. Other epigenetic drugs are in development to regulate various class of chromatin signaling factors. To keep up with this changing landscape, clinicians and doctors will need to stay familiar with genetic advances that translate to clinical practice, such as chromatin signaling. Although sequencing of the human genome was completed over a decade ago and its structure investigated for nearly half a century, molecular mechanisms that regulate gene expression remain largely misunderstood. An emerging concept called chromatin signaling proposes that small protein domains recognize chemical modifications on the genome scaffolding histone proteins, facilitating the nucleation of enzymatic complexes at specific loci that then open up or shut down the access to genetic information, thereby regulating gene expression. The addition and removal of chemical modifications on histones, as well as the proteins that specifically recognize these, is reviewed in Chromatin Signaling and Diseases. Finally, the impact of gene expression defects associated with malfunctioning chromatin signaling is also explored. Explains molecular mechanisms that regulate gene expression, which governs everything from embryonic development, growth, and human pathologies associated with aging Educates clinicians and researchers about chromatin signaling, a molecular mechanism that is changing our understanding of human pathology Explores the addition and removal of chemical modifications on histones, the proteins that specifically recognize these, and the impact of gene expression defects associated with malfunctioning chromatin signaling Helps researchers learn about the quickly expanding field of chromatin signaling
Posted in:

Epigenetic Contributions in Autoimmune Disease

This volume focuses on the relevance of epigenetic mechanisms in autoimmune disease. It provides new directions for future research in autoimmune disease.

Author: Esteban Ballestar

Publisher: Springer Science & Business Media

ISBN: 9781441982162

Category: Medical

Page: 182

View: 585

Download →

This volume focuses on the relevance of epigenetic mechanisms in autoimmune disease. It provides new directions for future research in autoimmune disease.
Posted in:

Molecular mechanisms and physiology of disease

Overall, this book encompasses a wide range of topics related to epigenetic mechanisms in health and disease and would appeal to anyone with an interest in epigenetics, chromatin biology and emerging epigenetic interventions and therapies.

Author: Nilanjana Maulik

Publisher: Springer

ISBN: 9781493907069

Category: Medical

Page: 505

View: 812

Download →

In a simplified form, epigenetics refers to heritable changes in phenotype that are not due to changes in the underlying DNA sequence. In this book, epigenetic mechanisms of regulation and dysregulation in health and disease are explored in great depth. Detailed chapters on epigenetic processes including DNA methylation and chromatin post-translational modifications including potential interventions with DNA methyltransferase inhibitors and histone deacetylase inhibitors are explored in initial chapters. These provide a detailed overview and important background to the entire field. The book is then focussed on epigenetic mechanisms involved in various diseases including anti-inflammatory and autoimmune conditions. Important accounts relating to the effects of epigenetics in metabolic syndrome, cardiovascular disease and asthma are the focus of subsequent chapters. The role of epigenetic dysregulation in malignancy is a current topic of interest and represents an intense field of research. A large component of this book is dedicated to the analysis of aberrant epigenetic processes in carcinogenesis and cancer progression. Further, chapters are focused on emerging cancer prevention using nutritional components and anti-cancer therapies particularly with histone deacetylase inhibitors, which have already been approved for the treatment of cutaneous T-cell lymphoma. The emerging role of nanoparticle preparations, especially in the context of delivering potential epigenetic therapies to target cells in various diseases, is also explored in this book. Overall, this book encompasses a wide range of topics related to epigenetic mechanisms in health and disease and would appeal to anyone with an interest in epigenetics, chromatin biology and emerging epigenetic interventions and therapies.
Posted in:

Nuclear Organization in Development and Disease

This book draws together contributions from cell and developmental biologists, structural biologists, geneticists and clinical scientists aimed at a better understanding of the cellular and molecular basis of these diseases.

Author: Derek J. Chadwick

Publisher: John Wiley & Sons

ISBN: 9780470093740

Category: Science

Page: 300

View: 637

Download →

This book draws together contributions from cell and developmental biologists, structural biologists, geneticists and clinical scientists aimed at a better understanding of the cellular and molecular basis of these diseases. Topics include: How nuclear structure and location within a nucleus affect gene expression Chromatin organization and cell differentiation The nature of the interactions between the nuclear envelope and the cytoskeleton The extent to which the cytoskeleton mediates communication between the cell membrane and nucleus in regulating gene expression and whether disruption of such communication might underlie the disease processes It is hoped that a better understanding of the mechanisms leading to disease pathogenesis may ultimately lead to more rational and appropriate treatments.
Posted in:

Self Perpetuating Structural States in Biology Disease and Genetics

To foster interactions between researchers in these two fields, the National Academy of Sciences convened an Arthur M.Sackler Colloquium entitled "Self-Perpetuating Structural States in Biology, Disease, and Genetics" in Washington, DC, on ...

Author: Proceedings of the National Academy of Sciences

Publisher: National Academies Press

ISBN: 9780309084451

Category: Science

Page: 136

View: 723

Download →

Over the past half-century, the central dogma, in which DNA makes RNA makes protein, has dominated thinking in biology, with continuing refinements in understanding of DNA inheritance, gene expression, and macromolecular interactions. However, we have also witnessed the elucidation of epigenetic phenomena that violate conventional notions of inheritance. Protein-only inheritance involves the transmission of phenotypes by self-perpetuating changes in protein conformation. Proteins that constitute chromatin can also transmit heritable information, for example, via posttranslational modifications of histones. Both the transmission of phenotypes via the formation of protein conformations and the inheritance of chromatin states involve self-perpetuating assemblies of proteins, and there is evidence for some common structural features and conceptual frameworks between them. To foster interactions between researchers in these two fields, the National Academy of Sciences convened an Arthur M.Sackler Colloquium entitled "Self-Perpetuating Structural States in Biology, Disease, and Genetics" in Washington, DC, on March 22-24, 2002. Participants described new phenomenology and provided insights into fundamental mechanisms of protein and chromatin inheritance. Perhaps most surprising to attendees was emerging evidence that these unconventional modes of inheritance may be common.
Posted in: