*The work is profusely illustrated with diagrams aiding in the understandingof proofs and explanations.*

**Author**: RichardL. Faber

**Publisher:** Routledge

**ISBN:** 9781351455152

**Category:** Mathematics

**Page:** 272

**View:** 135

Skip to content
# Posts

Differentilil Geometry and Relativity Theory: An Introduction approaches relativity asa geometric theory of space and time in which gravity is a manifestation of space-timecurvature, rathe1 than a force. Uniting differential geometry and both special and generalrelativity in a single source, this easy-to-understand text opens the general theory of relativityto mathematics majors having a backgr.ound only in multivariable calculus and linearalgebra.The book offers a broad overview of the physical foundations and mathematical details ofrelativity, and presents concrete physical interpretations of numerous abstract concepts inRiemannian geometry. The work is profusely illustrated with diagrams aiding in the understandingof proofs and explanations. Appendices feature important material on vectoranalysis and hyperbolic functions.Differential Geometry and Relativity Theory: An Introduction serves as the ideal textfor high-level undergraduate couues in mathematics and physics, and includes a solutionsmanual augmenting classroom study. It is an invaluable reference for mathematicians interestedin differential and IUemannian geometry, or the special and general theories ofrelativity
Differentilil Geometry and Relativity Theory: An Introduction approaches relativity asa geometric theory of space and time in which gravity is a manifestation of space-timecurvature, rathe1 than a force. Uniting differential geometry and both special and generalrelativity in a single source, this easy-to-understand text opens the general theory of relativityto mathematics majors having a backgr.ound only in multivariable calculus and linearalgebra.The book offers a broad overview of the physical foundations and mathematical details ofrelativity, and presents concrete physical interpretations of numerous abstract concepts inRiemannian geometry. The work is profusely illustrated with diagrams aiding in the understandingof proofs and explanations. Appendices feature important material on vectoranalysis and hyperbolic functions.Differential Geometry and Relativity Theory: An Introduction serves as the ideal textfor high-level undergraduate couues in mathematics and physics, and includes a solutionsmanual augmenting classroom study. It is an invaluable reference for mathematicians interestedin differential and IUemannian geometry, or the special and general theories ofrelativity
This book explores the work of Bernhard Riemann and its impact on mathematics, philosophy and physics. It features contributions from a range of fields, historical expositions, and selected research articles that were motivated by Riemann’s ideas and demonstrate their timelessness. The editors are convinced of the tremendous value of going into Riemann’s work in depth, investigating his original ideas, integrating them into a broader perspective, and establishing ties with modern science and philosophy. Accordingly, the contributors to this volume are mathematicians, physicists, philosophers and historians of science. The book offers a unique resource for students and researchers in the fields of mathematics, physics and philosophy, historians of science, and more generally to a wide range of readers interested in the history of ideas.
The principal aim of analysis of tensors is to investigate those relations which remain valid when we change from one coordinate system to another. This book on Tensors requires only a knowledge of elementary calculus, differential equations and classical mechanics as pre-requisites. It provides the readers with all the information about the tensors along with the derivation of all the tensorial relations/equations in a simple manner. The book also deals in detail with topics of importance to the study of special and general relativity and the geometry of differentiable manifolds with a crystal clear exposition. The concepts dealt within the book are well supported by a number of solved examples. A carefully selected set of unsolved problems is also given at the end of each chapter, and the answers and hints for the solution of these problems are given at the end of the book. The applications of tensors to the fields of differential geometry, relativity, cosmology and electromagnetism is another attraction of the present book. This book is intended to serve as text for postgraduate students of mathematics, physics and engineering. It is ideally suited for both students and teachers who are engaged in research in General Theory of Relativity and Differential Geometry.
This textbook is for mathematicians and mathematical physicists and is mainly concerned with the physical justification of both the mathematical framework and the foundations of the theory of general relativity. Previous knowledge of the relevant physics is not assumed. This book is also suitable as an introduction to pseudo-Riemannian geometry with emphasis on geometrical concepts. A significant part of the text is devoted to the discussion of causality and singularity theorems. The insights obtained are applied to black hole astrophysics, thereby making the connection to current active research in mathematical physics and cosmology.
This volume consists of expanded versions of invited lectures given at The Beemfest: Advances in Differential Geometry and General Relativity (University of Missouri-Columbia) on the occasion of Professor John K. Beem's retirement. The articles address problems in differential geometry in general and in particular, global Lorentzian geometry, Finsler geometry, causal boundaries, Penrose's cosmic censorship hypothesis, the geometry of differential operators with variable coefficients on manifolds, and asymptotically de Sitter spacetimes satisfying Einstein's equations with positive cosmological constant. The book is suitable for graduate students and research mathematicians interested in differential geometry.
This unique book presents a particularly beautiful way of looking at special relativity. The author encourages students to see beyond the formulas to the deeper structure. The unification of space and time introduced by Einstein’s special theory of relativity is one of the cornerstones of the modern scientific description of the universe. Yet the unification is counterintuitive because we perceive time very differently from space. Even in relativity, time is not just another dimension, it is one with different properties The book treats the geometry of hyperbolas as the key to understanding special relativity. The author simplifies the formulas and emphasizes their geometric content. Many important relations, including the famous relativistic addition formula for velocities, then follow directly from the appropriate (hyperbolic) trigonometric addition formulas. Prior mastery of (ordinary) trigonometry is sufficient for most of the material presented, although occasional use is made of elementary differential calculus, and the chapter on electromagnetism assumes some more advanced knowledge. Changes to the Second Edition The treatment of Minkowski space and spacetime diagrams has been expanded. Several new topics have been added, including a geometric derivation of Lorentz transformations, a discussion of three-dimensional spacetime diagrams, and a brief geometric description of "area" and how it can be used to measure time and distance. Minor notational changes were made to avoid conflict with existing usage in the literature. Table of Contents Preface 1. Introduction. 2. The Physics of Special Relativity. 3. Circle Geometry. 4. Hyperbola Geometry. 5. The Geometry of Special Relativity. 6. Applications. 7. Problems III. 8. Paradoxes. 9. Relativistic Mechanics. 10. Problems II. 11. Relativistic Electromagnetism. 12. Problems III. 13. Beyond Special Relativity. 14. Three-Dimensional Spacetime Diagrams. 15. Minkowski Area via Light Boxes. 16. Hyperbolic Geometry. 17. Calculus. Bibliography. Author Biography Tevian Dray is a Professor of Mathematics at Oregon State University. His research lies at the interface between mathematics and physics, involving differential geometry and general relativity, as well as nonassociative algebra and particle physics; he also studies student understanding of "middle-division" mathematics and physics content. Educated at MIT and Berkeley, he held postdoctoral positions in both mathematics and physics in several countries prior to coming to OSU in 1988. Professor Dray is a Fellow of the American Physical Society for his work in relativity, and an award-winning teacher.
Original, well-written work of interest Presents for the first time (physical) field theories written in sheaf-theoretic language Contains a wealth of minutely detailed, rigorous computations, ususally absent from standard physical treatments Author's mastery of the subject and the rigorous treatment of this text make it invaluable
On the sixtieth birthday of Andre Lichnerowicz a number of his friends, students, and coworkers decided to celebrate this event by preparing a jubilee volume of contributed articles in the two main fields of research marked by Lichnerowicz's work: differential geometry and mathematical physics. It was impossible to reflect in a single book the great variety of subjects tackled by Lichnerowicz. We hope that this book reflects some of the present trends of fields in which he worked, and some of the subjects to which he contributed in his long - and not yet finished - career. This career was very much marked by the influence of his masters, Elie Cartan who introduced him to research in mathematics, mainly in geometry and its relations with mathematical physics, and Georges Darmois who developed his interest in mechanics and physics, especially the theory of relativity and electromagnetism. This combination, and his personal talent, made him a natural scientific heir and continuator of the French mathematical physics school in the tradition of Henri Poincare. Some of his works would even be best qualified by a new field name, that of physical mathematics: branches of pure mathematics entirely motivated by physics.

Search and Download PDF eBook

*The work is profusely illustrated with diagrams aiding in the understandingof proofs and explanations.*

**Author**: RichardL. Faber

**Publisher:** Routledge

**ISBN:** 9781351455152

**Category:** Mathematics

**Page:** 272

**View:** 135

*O'Neill, Barrett, Elementary Differential Geometry, Academic Press, New York, 1966 38. Pontryagin, L. Ordinary Differential Equations, tr. by W. Counts, Addison-Wesley Pub.Co., Reading, MA, 1962 39. Pound, R. V., and J. L. Snider, ...*

**Author**: RichardL. Faber

**Publisher:** Routledge

**ISBN:** 9781351455145

**Category:** Mathematics

**Page:** 150

**View:** 157

*It contains three chapters on the extension of Riemann's ideas to modern physics, mainly, to relativity theory. Riemann, in his habilitation lecture Über die Hypothesen, welche der Geometrie zu Grunde liegen, expressed the fact that ...*

**Author**: Lizhen Ji

**Publisher:** Springer

**ISBN:** 9783319600390

**Category:** Mathematics

**Page:** 647

**View:** 366

*This book on Tensors requires only a knowledge of elementary calculus, differential equations and classical mechanics as pre-requisites.*

**Author**: AHSAN, ZAFAR

**Publisher:** PHI Learning Pvt. Ltd.

**ISBN:** 9788120350885

**Category:** Mathematics

**Page:** 240

**View:** 389

*This book is also suitable as an introduction to pseudo-Riemannian geometry with emphasis on geometrical concepts. A significant part of the text is devoted to the discussion of causality and singularity theorems.*

**Author**: Marcus Kriele

**Publisher:** Springer Science & Business Media

**ISBN:** 9783540663775

**Category:** Mathematics

**Page:** 444

**View:** 965

*This volume consists of expanded versions of invited lectures given at The Beemfest: Advances in Differential Geometry and General Relativity (University of Missouri-Columbia) on the occasion of Professor John K. Beem's retirement.*

**Author**: John K. Beem

**Publisher:** American Mathematical Soc.

**ISBN:** 9780821835395

**Category:** Mathematics

**Page:** 124

**View:** 473

*This unique book presents a particularly beautiful way of looking at special relativity.*

**Author**: Tevian Dray

**Publisher:** CRC Press

**ISBN:** 9781351663205

**Category:** Mathematics

**Page:** 167

**View:** 733

*Original, well-written work of interest Presents for the first time (physical) field theories written in sheaf-theoretic language Contains a wealth of minutely detailed, rigorous computations, ususally absent from standard physical ...*

**Author**: Anastasios Mallios

**Publisher:** Springer Science & Business Media

**ISBN:** 9780817646349

**Category:** Mathematics

**Page:** 244

**View:** 289

*We hope that this book reflects some of the present trends of fields in which he worked, and some of the subjects to which he contributed in his long - and not yet finished - career.*

**Author**: M. Cahen

**Publisher:** Springer Science & Business Media

**ISBN:** 9027707456

**Category:** Mathematics

**Page:** 324

**View:** 142

Privacy Policy

Copyright © 2023 PDF Download — Primer