From Signals to Image

The book also discusses the principles of MRI pulse sequencing and signal generation, gradient fields, and the methodologies implemented for image formation, form flow imaging and magnetic resonance angiography and the basic physics of ...

Author: Haim Azhari

Publisher: Springer Nature

ISBN: 9783030353261

Category: Technology & Engineering

Page: 474

View: 734

Download →

This textbook, intended for advanced undergraduate and graduate students, is an introduction to the physical and mathematical principles used in clinical medical imaging. The first two chapters introduce basic concepts and useful terms used in medical imaging and the tools implemented in image reconstruction, while the following chapters cover an array of topics such as: physics of x-rays and their implementation in planar and computed tomography (CT) imaging;nuclear medicine imaging and the methods of forming functional planar and single photon emission computed tomography (SPECT) images and Clinical imaging using positron emitters as radiotracers. The book also discusses the principles of MRI pulse sequencing and signal generation, gradient fields, and the methodologies implemented for image formation, form flow imaging and magnetic resonance angiography and the basic physics of acoustic waves, the different acquisition modes used in medical ultrasound, and the methodologies implemented for image formation and for flow imaging using the Doppler Effect. By the end of the book, readers will know what is expected from a medical image, will comprehend the issues involved in producing and assessing the quality of a medical image, will be able to conceptually implement this knowledge in the development of a new imaging modality, and will be able to write basic algorithms for image reconstruction. Knowledge of calculus, linear algebra, regular and partial differential equations, and a familiarity with the Fourier transform and it applications is expected, along with fluency with computer programming. The book contains exercises, homework problems, and sample exam questions that are exemplary of the main concepts and formulae students would encounter in a clinical setting.
Posted in:

Signal and Image Processing in Medical Applications

This book highlights recent findings on and analyses conducted on signals and images in the area of medicine.

Author: Amit Kumar

Publisher: Springer

ISBN: 981100689X

Category: Technology & Engineering

Page: 47

View: 390

Download →

This book highlights recent findings on and analyses conducted on signals and images in the area of medicine. The experimental investigations involve a variety of signals and images and their methodologies range from very basic to sophisticated methods. The book explains how signal and image processing methods can be used to detect and forecast abnormalities in an easy-to-follow manner, offering a valuable resource for researchers, engineers, physicians and bioinformatics researchers alike.
Posted in:

Recent Trends in Signal and Image Processing

This book contains interesting findings of some state-of-the-art research in the field of signal and image processing.

Author: Siddhartha Bhattacharyya

Publisher: Springer

ISBN: 9811088624

Category: Technology & Engineering

Page: 218

View: 525

Download →

This book contains interesting findings of some state-of-the-art research in the field of signal and image processing. It contains twenty one chapters covering a wide range of signal processing applications involving filtering, encoding, classification, segmentation, clustering, feature extraction, denoising, watermarking, object recognition, reconstruction and fractal analysis. Various types of signals including image, video, speech, non-speech audio, handwritten text, geometric diagram, ECG and EMG signals, MRI, PET and CT scan images, THz signals, solar wind speed signals (SWS) and photoplethysmogram (PPG) signals have been dealt with. It demonstrates how new paradigms of intelligent computing like quantum computing can be applied to process and analyze signals in a most precise and effective manner. Processing of high precision signals for real time target recognition by radar and processing of brain images, ECG and EMG signals that feature in this book have significant implications in defense mechanism and medical diagnosis. There are also applications of hybrid methods, algorithms and image filters which are proving to be better than the individual techniques or algorithms. Thus the present volume, enriched in depth and variety of techniques and algorithms concerning processing of various types of signals, is likely to be used as a compact yet handy reference for the young researchers, academicians and scientists working in the domain of signal and image processing and also to the post graduate students of computer science and information technology.
Posted in:

Discrete Fourier Analysis and Wavelets

Delivers an appropriate mix of theory and applications to help readers understand the process and problems of image and signal analysis Maintaining a comprehensive and accessible treatment of the concepts, methods, and applications of ...

Author: S. Allen Broughton

Publisher: John Wiley & Sons

ISBN: 9781119258223

Category: Mathematics

Page: 464

View: 106

Download →

Delivers an appropriate mix of theory and applications to help readers understand the process and problems of image and signal analysis Maintaining a comprehensive and accessible treatment of the concepts, methods, and applications of signal and image data transformation, this Second Edition of Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing features updated and revised coverage throughout with an emphasis on key and recent developments in the field of signal and image processing. Topical coverage includes: vector spaces, signals, and images; the discrete Fourier transform; the discrete cosine transform; convolution and filtering; windowing and localization; spectrograms; frames; filter banks; lifting schemes; and wavelets. Discrete Fourier Analysis and Wavelets introduces a new chapter on frames—a new technology in which signals, images, and other data are redundantly measured. This redundancy allows for more sophisticated signal analysis. The new coverage also expands upon the discussion on spectrograms using a frames approach. In addition, the book includes a new chapter on lifting schemes for wavelets and provides a variation on the original low-pass/high-pass filter bank approach to the design and implementation of wavelets. These new chapters also include appropriate exercises and MATLAB® projects for further experimentation and practice. • Features updated and revised content throughout, continues to emphasize discreteand digital methods, and utilizes MATLAB® to illustrate these concepts • Contains two new chapters on frames and lifting schemes, which take into account crucial new advances in the field of signal and image processing • Expands the discussion on spectrograms using a frames approach, which is an ideal method for reconstructing signals after information has been lost or corrupted (packet erasure) • Maintains a comprehensive treatment of linear signal processing for audio and image signals with a well-balanced and accessible selection of topics that appeal to a diverse audience within mathematics and engineering • Focuses on the underlying mathematics, especially the concepts of finite-dimensional vector spaces and matrix methods, and provides a rigorous model for signals and images based on vector spaces and linear algebra methods • Supplemented with a companion website containing solution sets and software exploration support for MATLAB and SciPy (Scientific Python) Thoroughly class-tested over the past fifteen years, Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing is an appropriately self-contained book ideal for a one-semester course on the subject. S. Allen Broughton, PhD, is Professor Emeritus of Mathematics at Rose-Hulman Institute of Technology. Dr. Broughton is a member of the American Mathematical Society (AMS) and the Society for the Industrial Applications of Mathematics (SIAM), and his research interests include the mathematics of image and signal processing, and wavelets. Kurt Bryan, PhD, is Professor of Mathematics at Rose-Hulman Institute of Technology. Dr. Bryanis a member of MAA and SIAM and has authored over twenty peer-reviewed journal articles. Kurt Bryan, PhD, is Professor of Mathematics at Rose-Hulman Institute of Technology. Dr. Bryanis a member of MAA and SIAM and has authored over twenty peer-reviewed journal articles.Maintaining a comprehensive and accessible treatment of the concepts, methods, and applications of signal and image data transformation, this Second Edition of Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing features updated and revised coverage throughout with an emphasis on key and recent developments in the field of signal and image processing. Topical coverage includes: vector spaces, signals, and images; the discrete Fourier transform; the discrete cosine transform; convolution and filtering; windowing and localization; spectrograms; frames; filter banks; lifting schemes; and wavelets. Discrete Fourier Analysis and Wavelets introduces a new chapter on frames—a new technology in which signals, images, and other data are redundantly measured. This redundancy allows for more sophisticated signal analysis. The new coverage also expands upon the discussion on spectrograms using a frames approach. In addition, the book includes a new chapter on lifting schemes for wavelets and provides a variation on the original low-pass/high-pass filter bank approach to the design and implementation of wavelets. These new chapters also include appropriate exercises and MATLAB® projects for further experimentation and practice. • Features updated and revised content throughout, continues to emphasize discrete and digital methods, and utilizes MATLAB® to illustrate these concepts • Contains two new chapters on frames and lifting schemes, which take into account crucial new advances in the field of signal and image processing • Expands the discussion on spectrograms using a frames approach, which is an ideal method for reconstructing signals after information has been lost or corrupted (packet erasure) • Maintains a comprehensive treatment of linear signal processing for audio and image signals with a well-balanced and accessible selection of topics that appeal to a diverse audience within mathematics and engineering • Focuses on the underlying mathematics, especially the concepts of finite-dimensional vector spaces and matrix methods, and provides a rigorous model for signals and images based on vector spaces and linear algebra methods • Supplemented with a companion website containing solution sets and software exploration support for MATLAB and SciPy (Scientific Python) Thoroughly class-tested over the past fifteen years, Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing is an appropriately self-contained book ideal for a one-semester course on the subject. S. Allen Broughton, PhD, is Professor Emeritus of Mathematics at Rose-Hulman Institute of Technology. Dr. Broughton is a member of the American Mathematical Society (AMS) and the Society for the Industrial Applications of Mathematics (SIAM), and his research interests include the mathematics of image and signal processing, and wavelets. Kurt Bryan, PhD, is Professor of Mathematics at Rose-Hulman Institute of Technology. Dr. Bryan is a member of MAA and SIAM and has authored over twenty peer-reviewed journal articles.a comprehensive and accessible treatment of the concepts, methods, and applications of signal and image data transformation, this Second Edition of Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing features updated and revised coverage throughout with an emphasis on key and recent developments in the field of signal and image processing. Topical coverage includes: vector spaces, signals, and images; the discrete Fourier transform; the discrete cosine transform; convolution and filtering; windowing and localization; spectrograms; frames; filter banks; lifting schemes; and wavelets. Discrete Fourier Analysis and Wavelets introduces a new chapter on frames—a new technology in which signals, images, and other data are redundantly measured. This redundancy allows for more sophisticated signal analysis. The new coverage also expands upon the discussion on spectrograms using a frames approach. In addition, the book includes a new chapter on lifting schemes for wavelets and provides a variation on the original low-pass/high-pass filter bank approach to the design and implementation of wavelets. These new chapters also include appropriate exercises and MATLAB® projects for further experimentation and practice. • Features updated and revised content throughout, continues to emphasize discrete and digital methods, and utilizes MATLAB® to illustrate these concepts • Contains two new chapters on frames and lifting schemes, which take into account crucial new advances in the field of signal and image processing • Expands the discussion on spectrograms using a frames approach, which is an ideal method for reconstructing signals after information has been lost or corrupted (packet erasure) • Maintains a comprehensive treatment of linear signal processing for audio and image signals with a well-balanced and accessible selection of topics that appeal to a diverse audience within mathematics and engineering • Focuses on the underlying mathematics, especially the concepts of finite-dimensional vector spaces and matrix methods, and provides a rigorous model for signals and images based on vector spaces and linear algebra methods • Supplemented with a companion website containing solution sets and software exploration support for MATLAB and SciPy (Scientific Python) Thoroughly class-tested over the past fifteen years, Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing is an appropriately self-contained book ideal for a one-semester course on the subject. S. Allen Broughton, PhD, is Professor Emeritus of Mathematics at Rose-Hulman Institute of Technology. Dr. Broughton is a member of the American Mathematical Society (AMS) and the Society for the Industrial Applications of Mathematics (SIAM), and his research interests include the mathematics of image and signal processing, and wavelets. Kurt Bryan, PhD, is Professor of Mathematics at Rose-Hulman Institute of Technology. Dr. Bryan is a member of MAA and SIAM and has authored over twenty peer-reviewed journal articles.
Posted in:

Adaptive Blind Signal and Image Processing

This volume unifies and extends the theories of adaptive blind signal and image processing and provides practical and efficient algorithms for blind source separation: Independent, Principal, Minor Component Analysis, and Multichannel Blind ...

Author: Andrzej Cichocki

Publisher: John Wiley & Sons

ISBN: 0471607916

Category: Science

Page: 586

View: 764

Download →

With solid theoretical foundations and numerous potential applications, Blind Signal Processing (BSP) is one of the hottest emerging areas in Signal Processing. This volume unifies and extends the theories of adaptive blind signal and image processing and provides practical and efficient algorithms for blind source separation: Independent, Principal, Minor Component Analysis, and Multichannel Blind Deconvolution (MBD) and Equalization. Containing over 1400 references and mathematical expressions Adaptive Blind Signal and Image Processing delivers an unprecedented collection of useful techniques for adaptive blind signal/image separation, extraction, decomposition and filtering of multi-variable signals and data. Offers a broad coverage of blind signal processing techniques and algorithms both from a theoretical and practical point of view Presents more than 50 simple algorithms that can be easily modified to suit the reader's specific real world problems Provides a guide to fundamental mathematics of multi-input, multi-output and multi-sensory systems Includes illustrative worked examples, computer simulations, tables, detailed graphs and conceptual models within self contained chapters to assist self study Accompanying CD-ROM features an electronic, interactive version of the book with fully coloured figures and text. C and MATLAB user-friendly software packages are also provided MATLAB is a registered trademark of The MathWorks, Inc. By providing a detailed introduction to BSP, as well as presenting new results and recent developments, this informative and inspiring work will appeal to researchers, postgraduate students, engineers and scientists working in biomedical engineering, communications, electronics, computer science, optimisations, finance, geophysics and neural networks.
Posted in:

Principles of Medical Imaging for Engineers

This introductory text separates the principles by which ‘signals’ are generated and the subsequent ‘reconstruction’ processes, to help illustrate that these are separate concepts and also highlight areas in which apparently ...

Author: Michael Chappell

Publisher: Springer Nature

ISBN: 9783030305116

Category: Medical

Page: 169

View: 981

Download →

This introduction to medical imaging introduces all of the major medical imaging techniques in wide use in both medical practice and medical research, including Computed Tomography, Ultrasound, Positron Emission Tomography, Single Photon Emission Tomography and Magnetic Resonance Imaging. Principles of Medical Imaging for Engineers introduces fundamental concepts related to why we image and what we are seeking to achieve to get good images, such as the meaning of ‘contrast’ in the context of medical imaging. This introductory text separates the principles by which ‘signals’ are generated and the subsequent ‘reconstruction’ processes, to help illustrate that these are separate concepts and also highlight areas in which apparently different medical imaging methods share common theoretical principles. Exercises are provided in every chapter, so the student reader can test their knowledge and check against worked solutions and examples. The text considers firstly the underlying physical principles by which information about tissues within the body can be extracted in the form of signals, considering the major principles used: transmission, reflection, emission and resonance. Then, it goes on to explain how these signals can be converted into images, i.e., full 3D volumes, where appropriate showing how common methods of ‘reconstruction’ are shared by some imaging methods despite relying on different physics to generate the ‘signals’. Finally, it examines how medical imaging can be used to generate more than just pictures, but genuine quantitative measurements, and increasingly measurements of physiological processes, at every point within the 3D volume by methods such as the use of tracers and advanced dynamic acquisitions. Principles of Medical Imaging for Engineers will be of use to engineering and physical science students and graduate students with an interest in biomedical engineering, and to their lecturers.
Posted in:

Spline and Spline Wavelet Methods with Applications to Signal and Image Processing

This is used for signals and images up sampling. In addition to the design of a diverse library of splines, SW, SWP and SWF, this book describes their applications to practical problems.

Author: Amir Z. Averbuch

Publisher: Springer

ISBN: 9402405623

Category: Technology & Engineering

Page: 496

View: 946

Download →

This volume provides universal methodologies accompanied by Matlab software to manipulate numerous signal and image processing applications. It is done with discrete and polynomial periodic splines. Various contributions of splines to signal and image processing from a unified perspective are presented. This presentation is based on Zak transform and on Spline Harmonic Analysis (SHA) methodology. SHA combines approximation capabilities of splines with the computational efficiency of the Fast Fourier transform. SHA reduces the design of different spline types such as splines, spline wavelets (SW), wavelet frames (SWF) and wavelet packets (SWP) and their manipulations by simple operations. Digital filters, produced by wavelets design process, give birth to subdivision schemes. Subdivision schemes enable to perform fast explicit computation of splines' values at dyadic and triadic rational points. This is used for signals and images up sampling. In addition to the design of a diverse library of splines, SW, SWP and SWF, this book describes their applications to practical problems. The applications include up sampling, image denoising, recovery from blurred images, hydro-acoustic target detection, to name a few. The SWF are utilized for image restoration that was degraded by noise, blurring and loss of significant number of pixels. The book is accompanied by Matlab based software that demonstrates and implements all the presented algorithms. The book combines extensive theoretical exposure with detailed description of algorithms, applications and software. The Matlab software can be downloaded from http://extras.springer.com
Posted in:

Recent Trends in Signal and Image Processing

This book presents fascinating, state-of-the-art research findings in the field of signal and image processing.

Author: Siddhartha Bhattacharyya

Publisher: Springer

ISBN: 9811367825

Category: Technology & Engineering

Page: 135

View: 609

Download →

This book presents fascinating, state-of-the-art research findings in the field of signal and image processing. It includes conference papers covering a wide range of signal processing applications involving filtering, encoding, classification, segmentation, clustering, feature extraction, denoising, watermarking, object recognition, reconstruction and fractal analysis. It addresses various types of signals, such as image, video, speech, non-speech audio, handwritten text, geometric diagram, ECG and EMG signals; MRI, PET and CT scan images; THz signals; solar wind speed signals (SWS); and photoplethysmogram (PPG) signals, and demonstrates how new paradigms of intelligent computing, like quantum computing, can be applied to process and analyze signals precisely and effectively. The book also discusses applications of hybrid methods, algorithms and image filters, which are proving to be better than the individual techniques or algorithms.
Posted in:

From Signals to Image

The book also discusses the principles of MRI pulse sequencing and signal generation, gradient fields, and the methodologies implemented for image formation, form flow imaging and magnetic resonance angiography and the basic physics of ...

Author: Haim Azhari

Publisher: Springer

ISBN: 3030353257

Category: Technology & Engineering

Page: 457

View: 654

Download →

This textbook, intended for advanced undergraduate and graduate students, is an introduction to the physical and mathematical principles used in clinical medical imaging. The first two chapters introduce basic concepts and useful terms used in medical imaging and the tools implemented in image reconstruction, while the following chapters cover an array of topics such as: physics of x-rays and their implementation in planar and computed tomography (CT) imaging;nuclear medicine imaging and the methods of forming functional planar and single photon emission computed tomography (SPECT) images and Clinical imaging using positron emitters as radiotracers. The book also discusses the principles of MRI pulse sequencing and signal generation, gradient fields, and the methodologies implemented for image formation, form flow imaging and magnetic resonance angiography and the basic physics of acoustic waves, the different acquisition modes used in medical ultrasound, and the methodologies implemented for image formation and for flow imaging using the Doppler Effect. By the end of the book, readers will know what is expected from a medical image, will comprehend the issues involved in producing and assessing the quality of a medical image, will be able to conceptually implement this knowledge in the development of a new imaging modality, and will be able to write basic algorithms for image reconstruction. Knowledge of calculus, linear algebra, regular and partial differential equations, and a familiarity with the Fourier transform and it applications is expected, along with fluency with computer programming. The book contains exercises, homework problems, and sample exam questions that are exemplary of the main concepts and formulae students would encounter in a clinical setting.
Posted in:

Image and Signal Processing

This volume constitutes the refereed proceedings of the 9th International Conference on Image and Signal Processing, ICISP 2020, which was due to be held in Marrakesh, Morocco, in June 2020.

Author: Abderrahim El Moataz

Publisher: Springer

ISBN: 3030519341

Category: Computers

Page: 386

View: 722

Download →

This volume constitutes the refereed proceedings of the 9th International Conference on Image and Signal Processing, ICISP 2020, which was due to be held in Marrakesh, Morocco, in June 2020. The conference was cancelled due to the COVID-19 pandemic. The 40 revised full papers were carefully reviewed and selected from 84 submissions. The contributions presented in this volume were organized in the following topical sections: digital cultural heritage & color and spectral imaging; data and image processing for precision agriculture; machine learning application and innovation; biomedical imaging; deep learning and applications; pattern recognition; segmentation and retrieval; mathematical imaging & signal processing.
Posted in:

Biomedical Signal and Image Processing in Patient Care

In healthcare systems, medical devices help physicians and specialists in diagnosis, prognosis, and therapeutics. As research shows, validation of medical devices is significantly optimized by accurate signal processing.

Author: Kolekar, Maheshkumar H.

Publisher: IGI Global

ISBN: 9781522528302

Category: Technology & Engineering

Page: 312

View: 124

Download →

In healthcare systems, medical devices help physicians and specialists in diagnosis, prognosis, and therapeutics. As research shows, validation of medical devices is significantly optimized by accurate signal processing. Biomedical Signal and Image Processing in Patient Care is a pivotal reference source for progressive research on the latest development of applications and tools for healthcare systems. Featuring extensive coverage on a broad range of topics and perspectives such as telemedicine, human machine interfaces, and multimodal data fusion, this publication is ideally designed for academicians, researchers, students, and practitioners seeking current scholarly research on real-life technological inventions.
Posted in:

Local Approximation Techniques in Signal and Image Processing

This book deals with a wide class of novel and efficient adaptive signal processing techniques developed to restore signals from noisy and degraded observations.

Author: Vladimir Katkovnik

Publisher: SPIE-International Society for Optical Engineering

ISBN: UOM:39015069109836

Category: Computers

Page: 553

View: 846

Download →

This book deals with a wide class of novel and efficient adaptive signal processing techniques developed to restore signals from noisy and degraded observations. These signals include those acquired from still or video cameras, electron microscopes, radar, X-rays, or ultrasound devices, and are used for various purposes, including entertainment, medical, business, industrial, military, civil, security, and scientific. In many cases useful information and high quality must be extracted from the imaging. However, often raw signals are not directly suitable for this purpose and must be processed in some way. Such processing is called signal reconstruction. This book is devoted to a recent and original approach to signal reconstruction based on combining two independent ideas: local polynomial approximation and the intersection of confidence interval rule.
Posted in:

Digital Signal and Image Processing using MATLAB Volume 1

This fully revised and updated second edition presents the most important theoretical aspects of Image and Signal Processing (ISP) for both deterministic and random signals.

Author: Gérard Blanchet

Publisher: John Wiley & Sons

ISBN: 9781848216402

Category: Technology & Engineering

Page: 512

View: 945

Download →

This fully revised and updated second edition presents the most important theoretical aspects of Image and Signal Processing (ISP) for both deterministic and random signals. The theory is supported by exercises and computer simulations relating to real applications. More than 200 programs and functions are provided in the MATLABÒ language, with useful comments and guidance, to enable numerical experiments to be carried out, thus allowing readers to develop a deeper understanding of both the theoretical and practical aspects of this subject. This fully revised new edition updates : - the introduction to MATLAB programs and functions as well as the Graphically displaying results for 2D displays - Calibration fundamentals for Discrete Time Signals and Sampling in Deterministic signals - image processing by modifying the contrast - also added are examples and exercises.
Posted in:

Spline and Spline Wavelet Methods with Applications to Signal and Image Processing

This book provides a practical guide, complete with accompanying Matlab software, to many different types of polynomial and discrete splines and spline-based wavelets, multiwavelets and wavelet frames in signal and image processing ...

Author: Amir Z. Averbuch

Publisher: Springer

ISBN: 9783319921235

Category: Technology & Engineering

Page: 287

View: 194

Download →

This book provides a practical guide, complete with accompanying Matlab software, to many different types of polynomial and discrete splines and spline-based wavelets, multiwavelets and wavelet frames in signal and image processing applications. In self-contained form, it briefly outlines a broad range of polynomial and discrete splines with equidistant nodes and their signal-processing-relevant properties. In particular, interpolating, smoothing, and shift-orthogonal splines are presented.
Posted in:

Medical Imaging Signals and Systems

This text is designed for courses in medical imaging systems.

Author: Jerry L. Prince

Publisher: Prentice Hall

ISBN: 0132145189

Category: Medical

Page: 544

View: 649

Download →

Covers the most important imaging modalities in radiology: projection radiography, x-ray computed tomography, nuclear medicine, ultrasound imaging, and magnetic resonance imaging. Organized into parts to emphasize key overall conceptual divisions.
Posted in:

Multimedia Signals

Multimedia signal processing uses computational techniques to read digital data. This book on multimedia signals explains the processes that are involved in audio and video processing, data conversion and data compression.

Author: Anna Sanders

Publisher:

ISBN: 1632385295

Category: Computers

Page: 235

View: 705

Download →

Multimedia signal processing uses computational techniques to read digital data. This book on multimedia signals explains the processes that are involved in audio and video processing, data conversion and data compression. Signals are arranged in a sequence related to time, space or frequency. Algorithms that correlate to simple digital signal processes are discussed in detail. This book is a valuable compilation of topics ranging from the basic to the most complex advancements in the field of multimedia signal processing. The aim of this text is to present researches that have transformed this discipline and aided the advancement of this field. It will be helpful to students, experts, researchers and professionals engaged in the fields of digital electronics, computer engineering and telecommunication theory.
Posted in:

Quaternion Fourier Transforms for Signal and Image Processing

The concepts presented in this chapter will be illustrated on simulated and real images and signals. 4.1. Generalized convolution One of the early motivations for the study of QFTs is that they can be used to describe color image ...

Author: Todd A. Ell

Publisher: John Wiley & Sons

ISBN: 9781848214781

Category: Technology & Engineering

Page: 160

View: 823

Download →

Based on updates to signal and image processing technology made in the last two decades, this text examines the most recent research results pertaining to Quaternion Fourier Transforms. QFT is a central component of processing color images and complex valued signals. The book’s attention to mathematical concepts, imaging applications, and Matlab compatibility render it an irreplaceable resource for students, scientists, researchers, and engineers.
Posted in:

Multimodal User Interfaces

The framework is not at all restricted to medical images though and this is illustrated by applying it to multimedia sequences as well.

Author: Dimitros Tzovaras

Publisher: Springer Science & Business Media

ISBN: 3540783458

Category: Technology & Engineering

Page: 315

View: 296

Download →

tionship indicates how multimodal medical image processing can be unified to a large extent, e. g. multi-channel segmentation and image registration, and extend information theoretic registration to other features than image intensities. The framework is not at all restricted to medical images though and this is illustrated by applying it to multimedia sequences as well. In Chapter 4, the main results from the developments in plastic UIs and mul- modal UIs are brought together using a theoretic and conceptual perspective as a unifying approach. It is aimed at defining models useful to support UI plasticity by relying on multimodality, at introducing and discussing basic principles that can drive the development of such UIs, and at describing some techniques as proof-of-concept of the aforementioned models and principles. In Chapter 4, the authors introduce running examples that serve as illustration throughout the d- cussion of the use of multimodality to support plasticity.
Posted in: