Geometric Aspects of Functional Analysis

This volume of original research papers from the Israeli GAFA seminar during the years 1996-2000 not only reports on more traditional directions of Geometric Functional Analysis, but also reflects on some of the recent new trends in Banach ...

Author: Israel Seminar on Geometrical Aspects of Functional Analysis

Publisher: Springer Science & Business Media

ISBN: 3540410708

Category: Mathematics

Page: 289

View: 973

Download →

This volume of original research papers from the Israeli GAFA seminar during the years 1996-2000 not only reports on more traditional directions of Geometric Functional Analysis, but also reflects on some of the recent new trends in Banach Space Theory and related topics. These include the tighter connection with convexity and the resulting added emphasis on convex bodies that are not necessarily centrally symmetric, and the treatment of bodies which have only very weak convex-like structure. Another topic represented here is the use of new probabilistic tools; in particular transportation of measure methods and new inequalities emerging from Poincaré-like inequalities.
Posted in:

Geometric Aspects of Functional Analysis

As in the previous Seminar Notes, the current volume reflects general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense.

Author: Bo'az Klartag

Publisher: Springer

ISBN: 9783319452821

Category: Mathematics

Page: 366

View: 218

Download →

As in the previous Seminar Notes, the current volume reflects general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. A classical theme in the Local Theory of Banach Spaces which is well represented in this volume is the identification of lower-dimensional structures in high-dimensional objects. More recent applications of high-dimensionality are manifested by contributions in Random Matrix Theory, Concentration of Measure and Empirical Processes. Naturally, the Gaussian measure plays a central role in many of these topics, and is also studied in this volume; in particular, the recent breakthrough proof of the Gaussian Correlation Conjecture is revisited. The interplay of the theory with Harmonic and Spectral Analysis is also well apparent in several contributions. The classical relation to both the primal and dual Brunn-Minkowski theories is also well represented, and related algebraic structures pertaining to valuations and valent functions are discussed. All contributions are original research papers and were subject to the usual refereeing standards.
Posted in:

Geometric Aspects of Functional Analysis

Continuing the theme of the previous volumes, these seminar notes reflect general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense.

Author: Bo'az Klartag

Publisher: Springer

ISBN: 3030360199

Category: Mathematics

Page: 342

View: 409

Download →

Continuing the theme of the previous volumes, these seminar notes reflect general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. Two classical topics represented are the Concentration of Measure Phenomenon in the Local Theory of Banach Spaces, which has recently had triumphs in Random Matrix Theory, and the Central Limit Theorem, one of the earliest examples of regularity and order in high dimensions. Central to the text is the study of the Poincaré and log-Sobolev functional inequalities, their reverses, and other inequalities, in which a crucial role is often played by convexity assumptions such as Log-Concavity. The concept and properties of Entropy form an important subject, with Bourgain's slicing problem and its variants drawing much attention. Constructions related to Convexity Theory are proposed and revisited, as well as inequalities that go beyond the Brunn–Minkowski theory. One of the major current research directions addressed is the identification of lower-dimensional structures with remarkable properties in rather arbitrary high-dimensional objects. In addition to functional analytic results, connections to Computer Science and to Differential Geometry are also discussed.
Posted in:

Geometric Aspects of Functional Analysis

This collection of original papers related to the Israeli GAFA seminar (on Geometric Aspects of Functional Analysis) during the years 2004-2005 reflects the general trends of the theory and are a source of inspiration for research.

Author: Vitali D. Milman

Publisher: Springer

ISBN: 9783540720539

Category: Mathematics

Page: 332

View: 783

Download →

This collection of original papers related to the Israeli GAFA seminar (on Geometric Aspects of Functional Analysis) during the years 2004-2005 reflects the general trends of the theory and are a source of inspiration for research. Most of the papers deal with different aspects of the Asymptotic Geometric Analysis, ranging from classical topics in the geometry of convex bodies to the study of sections or projections of convex bodies.
Posted in:

Geometric Aspects of Functional Analysis

Continuing the theme of the previous volumes, these seminar notes reflect general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense.

Author: Bo'az Klartag

Publisher: Springer Nature

ISBN: 9783030360207

Category: Mathematics

Page: 342

View: 764

Download →

Continuing the theme of the previous volumes, these seminar notes reflect general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. Two classical topics represented are the Concentration of Measure Phenomenon in the Local Theory of Banach Spaces, which has recently had triumphs in Random Matrix Theory, and the Central Limit Theorem, one of the earliest examples of regularity and order in high dimensions. Central to the text is the study of the Poincaré and log-Sobolev functional inequalities, their reverses, and other inequalities, in which a crucial role is often played by convexity assumptions such as Log-Concavity. The concept and properties of Entropy form an important subject, with Bourgain's slicing problem and its variants drawing much attention. Constructions related to Convexity Theory are proposed and revisited, as well as inequalities that go beyond the Brunn–Minkowski theory. One of the major current research directions addressed is the identification of lower-dimensional structures with remarkable properties in rather arbitrary high-dimensional objects. In addition to functional analytic results, connections to Computer Science and to Differential Geometry are also discussed.
Posted in:

Geometric Aspects of Functional Analysis

This collection of original papers related to the Israeli GAFA seminar (on Geometric Aspects of Functional Analysis) from the years 2006 to 2011 continues the long tradition of the previous volumes, which reflect the general trends of ...

Author: Bo'az Klartag

Publisher: Springer

ISBN: 9783642298493

Category: Mathematics

Page: 449

View: 991

Download →

This collection of original papers related to the Israeli GAFA seminar (on Geometric Aspects of Functional Analysis) from the years 2006 to 2011 continues the long tradition of the previous volumes, which reflect the general trends of Asymptotic Geometric Analysis, understood in a broad sense, and are a source of inspiration for new research. Most of the papers deal with various aspects of the theory, including classical topics in the geometry of convex bodies, inequalities involving volumes of such bodies or more generally, logarithmically-concave measures, valuation theory, probabilistic and isoperimetric problems in the combinatorial setting, volume distribution on high-dimensional spaces and characterization of classical constructions in Geometry and Analysis (like the Legendre and Fourier transforms, derivation and others). All the papers here are original research papers.
Posted in:

Geometric Aspects of Functional Analysis

As in the previous Seminar Notes, the current volume reflects general trends in the study of Geometric Aspects of Functional Analysis.

Author: Bo'az Klartag

Publisher: Springer

ISBN: 3319094769

Category: Mathematics

Page: 463

View: 787

Download →

As in the previous Seminar Notes, the current volume reflects general trends in the study of Geometric Aspects of Functional Analysis. Most of the papers deal with different aspects of Asymptotic Geometric Analysis, understood in a broad sense; many continue the study of geometric and volumetric properties of convex bodies and log-concave measures in high-dimensions and in particular the mean-norm, mean-width, metric entropy, spectral-gap, thin-shell and slicing parameters, with applications to Dvoretzky and Central-Limit-type results. The study of spectral properties of various systems, matrices, operators and potentials is another central theme in this volume. As expected, probabilistic tools play a significant role and probabilistic questions regarding Gaussian noise stability, the Gaussian Free Field and First Passage Percolation are also addressed. The historical connection to the field of Classical Convexity is also well represented with new properties and applications of mixed-volumes. The interplay between the real convex and complex pluri-subharmonic settings continues to manifest itself in several additional articles. All contributions are original research papers and were subject to the usual refereeing standards.
Posted in:

Geometric Aspects of Functional Analysis

Continuing the theme of the previous volumes, these seminar notes reflect general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense.

Author: Bo'az Klartag

Publisher: Springer

ISBN: 3030467619

Category: Mathematics

Page: 348

View: 316

Download →

Continuing the theme of the previous volumes, these seminar notes reflect general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. Two classical topics represented are the Concentration of Measure Phenomenon in the Local Theory of Banach Spaces, which has recently had triumphs in Random Matrix Theory, and the Central Limit Theorem, one of the earliest examples of regularity and order in high dimensions. Central to the text is the study of the Poincaré and log-Sobolev functional inequalities, their reverses, and other inequalities, in which a crucial role is often played by convexity assumptions such as Log-Concavity. The concept and properties of Entropy form an important subject, with Bourgain's slicing problem and its variants drawing much attention. Constructions related to Convexity Theory are proposed and revisited, as well as inequalities that go beyond the Brunn–Minkowski theory. One of the major current research directions addressed is the identification of lower-dimensional structures with remarkable properties in rather arbitrary high-dimensional objects. In addition to functional analytic results, connections to Computer Science and to Differential Geometry are also discussed.
Posted in:

Geometric Aspects of Functional Analysis

This is the third published volume of the proceedings of the Israel Seminar on Geometric Aspects of Functional Analysis. The large majority of the papers in this volume are original research papers.

Author: Joram Lindenstrauss

Publisher: Springer

ISBN: 9783540392354

Category: Mathematics

Page: 290

View: 130

Download →

This is the third published volume of the proceedings of the Israel Seminar on Geometric Aspects of Functional Analysis. The large majority of the papers in this volume are original research papers. There was last year a strong emphasis on classical finite-dimensional convexity theory and its connection with Banach space theory. In recent years, it has become evident that the notions and results of the local theory of Banach spaces are useful in solving classical questions in convexity theory. The present volume contributes to clarifying this point. In addition this volume contains basic contributions to ergodic theory, invariant subspace theory and qualitative differential geometry.
Posted in:

Geometrical Aspects of Functional Analysis

These are the proceedings of the Israel Seminar on the Geometric Aspects of Functional Analysis (GAFA) which was held between October 1985 and June 1986.

Author: Joram Lindenstrauss

Publisher: Springer

ISBN: 9783540477716

Category: Mathematics

Page: 212

View: 117

Download →

These are the proceedings of the Israel Seminar on the Geometric Aspects of Functional Analysis (GAFA) which was held between October 1985 and June 1986. The main emphasis of the seminar was on the study of the geometry of Banach spaces and in particular the study of convex sets in and infinite-dimensional spaces. The greater part of the volume is made up of original research papers; a few of the papers are expository in nature. Together, they reflect the wide scope of the problems studied at present in the framework of the geometry of Banach spaces.
Posted in:

Geometric Aspects of Functional Analysis

All the papers of this collection are original research papers.

Author: Vitali D. Milman

Publisher: Springer

ISBN: 9783540364283

Category: Mathematics

Page: 432

View: 991

Download →

The proceedings of the Israeli GAFA seminar on Geometric Aspect of Functional Analysis during the years 2001-2002 follow the long tradition of the previous volumes. They continue to reflect the general trends of the Theory. Several papers deal with the slicing problem and its relatives. Some deal with the concentration phenomenon and related topics. In many of the papers there is a deep interplay between Probability and Convexity. The volume contains also a profound study on approximating convex sets by randomly chosen polytopes and its relation to floating bodies, an important subject in Classical Convexity Theory. All the papers of this collection are original research papers.
Posted in:

Geometrical Aspects of Functional Analysis

These are the proceedings of the Israel Seminar on the Geometric Aspects of Functional Analysis (GAFA) which was held between October 1985 and June 1986.

Author: Joram Lindenstrauss

Publisher: Springer

ISBN: STANFORD:36105032367430

Category: Mathematics

Page: 212

View: 309

Download →

These are the proceedings of the Israel Seminar on the Geometric Aspects of Functional Analysis (GAFA) which was held between October 1985 and June 1986. The main emphasis of the seminar was on the study of the geometry of Banach spaces and in particular the study of convex sets in and infinite-dimensional spaces. The greater part of the volume is made up of original research papers; a few of the papers are expository in nature. Together, they reflect the wide scope of the problems studied at present in the framework of the geometry of Banach spaces.
Posted in: