INTRODUCTION TO LINEAR REGRESSION ANALYSIS 3RD ED

Modern topics added include classification and regression analysis (CART), neural networks, and the bootstrap, among others.· Expanded topics include robust regression, nonlinear regression, GLMs, and others· Problems and data sets have ...

Author: Douglas C. Montgomery

Publisher:

ISBN: 8126510471

Category: Regression analysis

Page: 672

View: 930

Download →

Market_Desc: · Practitioners in diverse fields, including engineers, who use regression analysis techniques Special Features: A revised and updated edition of a book with a solid reputation for its excellent treatment of the theory and applications of linear regression analysis, integrating standard topics with some of the newer and less conventional areas. The new edition features complete reorganization of the material since the previous edition was published in 1992, allowing for a more logical flow of bite-sized material while keeping the size of the book manageable. Modern topics added include classification and regression analysis (CART), neural networks, and the bootstrap, among others.· Expanded topics include robust regression, nonlinear regression, GLMs, and others· Problems and data sets have been extensively revised· Remains oriented toward the analyst who uses computers for problem solution· Authors have greatly expanded the discussion of regression diagnostics, illustrating all of the major procedures available in contemporary software packages· An accompanying Web site contains data sets, extensive problem solutions, and software hints About The Book: This book is intended as a text for a basic course in linear regression analysis. It contains the standard topics as well as some of the newer and more unconventional ones and blends both theory and application so that the reader will obtain and understanding of the basic principles necessary to apply regression methods in a variety of practical settings.
Posted in:

Introduction to Linear Regression Analysis

Praise for the Fourth Edition "As with previous editions, the authors have produced a leadingtextbook on regression." —Journal of the American Statistical Association A comprehensive and up-to-date introduction to thefundamentals of ...

Author: Douglas C. Montgomery

Publisher: John Wiley & Sons

ISBN: 9781118627365

Category: Mathematics

Page: 672

View: 843

Download →

Praise for the Fourth Edition "As with previous editions, the authors have produced a leadingtextbook on regression." —Journal of the American Statistical Association A comprehensive and up-to-date introduction to thefundamentals of regression analysis Introduction to Linear Regression Analysis, Fifth Editioncontinues to present both the conventional and less common uses oflinear regression in today’s cutting-edge scientificresearch. The authors blend both theory and application to equipreaders with an understanding of the basic principles needed toapply regression model-building techniques in various fields ofstudy, including engineering, management, and the healthsciences. Following a general introduction to regression modeling,including typical applications, a host of technical tools areoutlined such as basic inference procedures, introductory aspectsof model adequacy checking, and polynomial regression models andtheir variations. The book then discusses how transformations andweighted least squares can be used to resolve problems of modelinadequacy and also how to deal with influential observations. TheFifth Edition features numerous newly added topics,including: A chapter on regression analysis of time series data thatpresents the Durbin-Watson test and other techniques for detectingautocorrelation as well as parameter estimation in time seriesregression models Regression models with random effects in addition to adiscussion on subsampling and the importance of the mixedmodel Tests on individual regression coefficients and subsets ofcoefficients Examples of current uses of simple linear regression models andthe use of multiple regression models for understanding patientsatisfaction data. In addition to Minitab, SAS, and S-PLUS, the authors haveincorporated JMP and the freely available R software to illustratethe discussed techniques and procedures in this new edition.Numerous exercises have been added throughout, allowing readers totest their understanding of the material. Introduction to Linear Regression Analysis, Fifth Editionis an excellent book for statistics and engineering courses onregression at the upper-undergraduate and graduate levels. The bookalso serves as a valuable, robust resource for professionals in thefields of engineering, life and biological sciences, and the socialsciences.
Posted in:

Solutions Manual to accompany Introduction to Linear Regression Analysis

As the Solutions Manual, this book is meant to accompany the main title, Introduction to Linear Regression Analysis, Fifth Edition.

Author: Douglas C. Montgomery

Publisher: John Wiley & Sons

ISBN: 9781118548509

Category: Mathematics

Page: 164

View: 968

Download →

As the Solutions Manual, this book is meant to accompany the main title, Introduction to Linear Regression Analysis, Fifth Edition. Clearly balancing theory with applications, this book describes both the conventional and less common uses of linear regression in the practical context of today's mathematical and scientific research. Beginning with a general introduction to regression modeling, including typical applications, the book then outlines a host of technical tools that form the linear regression analytical arsenal, including: basic inference procedures and introductory aspects of model adequacy checking; how transformations and weighted least squares can be used to resolve problems of model inadequacy; how to deal with influential observations; and polynomial regression models and their variations. The book also includes material on regression models with autocorrelated errors, bootstrapping regression estimates, classification and regression trees, and regression model validation.
Posted in:

Introduction to Linear Regression Analysis Student Solutions Manual

This popular book blends both theory and application to equip the reader with an understanding of the basic principles necessary to apply regression model-building techniques in a wide variety of application environments.

Author: Douglas C. Montgomery

Publisher: Wiley-Interscience

ISBN: 0470125063

Category: Mathematics

Page: 152

View: 861

Download →

A comprehensive and up-to-date introduction to the fundamentals of regression analysis The Fourth Edition of Introduction to Linear Regression Analysis describes both the conventional and less common uses of linear regression in the practical context of today's mathematical and scientific research. This popular book blends both theory and application to equip the reader with an understanding of the basic principles necessary to apply regression model-building techniques in a wide variety of application environments. It assumes a working knowledge of basic statistics and a familiarity with hypothesis testing and confidence intervals, as well as the normal, t, x2, and F distributions. Illustrating all of the major procedures employed by the contemporary software packages MINITAB(r), SAS(r), and S-PLUS(r), the Fourth Edition begins with a general introduction to regression modeling, including typical applications. A host of technical tools are outlined, such as basic inference procedures, introductory aspects of model adequacy checking, and polynomial regression models and their variations. The book discusses how transformations and weighted least squares can be used to resolve problems of model inadequacy and also how to deal with influential observations. Subsequent chapters discuss: * Indicator variables and the connection between regression and analysis-of-variance models * Variable selection and model-building techniques and strategies * The multicollinearity problem--its sources, effects, diagnostics, and remedial measures * Robust regression techniques such as M-estimators, and properties of robust estimators * The basics of nonlinear regression * Generalized linear models * Using SAS(r) for regression problems This book is a robust resource that offers solid methodology for statistical practitioners and professionals in the fields of engineering, physical and chemical sciences, economics, management, life and biological sciences, and the social sciences. Both the accompanying FTP site, which contains data sets, extensive problem solutions, software hints, and PowerPoint(r) slides, as well as the book's revised presentation of topics in increasing order of complexity, facilitate its use in a classroom setting. With its new exercises and structure, this book is highly recommended for upper-undergraduate and beginning graduate students in mathematics, engineering, and natural sciences. Scientists and engineers will find the book to be an excellent choice for reference and self-study.
Posted in:

Introduction to Regression Analysis

This book explores conventional topics as well as recent practical developments, linking theory with application.

Author: Michael A. Golberg

Publisher: WIT Press

ISBN: 9781853126246

Category: Mathematics

Page: 436

View: 306

Download →

In order to apply regression analysis effectively, it is necessary to understand both the underlying theory and its practical application. This book explores conventional topics as well as recent practical developments, linking theory with application. Intended to continue from where most basic statistics texts end, it is designed primarily for advanced undergraduates, graduate students and researchers in various fields of engineering, chemical and physical sciences, mathematical sciences and statistics.
Posted in:

Linear Regression Analysis

... The Assessment of Relative Risks LAD - Operational Subjective Statistical Methods: A Mathematical, Philosophical, ... Survival Analysis, Second Edition MONTGOMERY, PECK, and VINING ' Introduction to Linear Regression Analysis, ...

Author: George A. F. Seber

Publisher: John Wiley & Sons

ISBN: 9781118274422

Category: Mathematics

Page: 582

View: 415

Download →

Concise, mathematically clear, and comprehensive treatment of thesubject. * Expanded coverage of diagnostics and methods of modelfitting. * Requires no specialized knowledge beyond a good grasp of matrixalgebra and some acquaintance with straight-line regression andsimple analysis of variance models. * More than 200 problems throughout the book plus outline solutionsfor the exercises. * This revision has been extensively class-tested.
Posted in:

Introduction to Linear Regression Analysis Fifth Edition Set

This set includes Introduction to Linear Regression Analysis, 5th Edition & Solutions Manual to Accompany Introduction to Linear Regression Analysis, 5th Edition.

Author: Douglas C. Montgomery

Publisher: Wiley

ISBN: 1118780574

Category: Mathematics

Page: 836

View: 115

Download →

This set includes Introduction to Linear Regression Analysis, 5th Edition & Solutions Manual to Accompany Introduction to Linear Regression Analysis, 5th Edition. Introduction to Linear Regression Analysis, Fifth Edition continues to present both the conventional and less common uses of linear regression in today’s cutting-edge scientific research. The authors blend both theory and application to equip readers with an understanding of the basic principles needed to apply regression model-building techniques in various fields of study, including engineering, management, and the health sciences.
Posted in:

Linear Regression Analysis with JMP and R

In subsequent chapter JMP tutorials, we will introduce you to additional functions in JMP that are applicable to fitting and analyzing linear regression models. a) b) Figure 1.17 (a) Accessing built-in data sets in.

Author: Rachel T. Silvestrini

Publisher: Quality Press

ISBN: 9780873899697

Category: Education

Page: 468

View: 293

Download →

This comprehensive but low-cost textbook is intended for use in an undergraduate level regression course, as well as for use by practitioners. The authors have included some statistical details throughout the book but focus on interpreting results for real applications of regression analysis. Chapters are devoted to data collection and cleaning; data visualization; model fitting and inference; model prediction and inference; model diagnostics; remedial measures; model selection techniques; model validation; and a case study demonstrating the techniques outlined throughout the book. The examples throughout each chapter are illustrated using the software packages R and JMP. At the end of each chapter, there is a tutorial section demonstrating the use of both R and JMP. The R tutorial contains source code and the JMP tutorial contains a step by step guide. Each chapter also includes exercises for further study and learning.
Posted in:

Introduction to Linear Regression Analysis 5th Edition

The book also serves as a valuable, robust resource for professionals in the fields of engineeri .

Author: Douglas Montgomery

Publisher:

ISBN: OCLC:1121242865

Category:

Page: 672

View: 212

Download →

Praise for the Fourth Edition "As with previous editions, the authors have produced a leading textbook on regression."--Journal of the American Statistical Association A comprehensive and up-to-date introduction to the fundamentals of regression analysis Introduction to Linear Regression Analysis, Fifth Edition continues to present both the conventional and less common uses of linear regression in today's cutting-edge scientific research. The authors blend both theory and application to equip readers with an understanding of the basic principles needed to apply regression model-building techniques in various fields of study, including engineering, management, and the health sciences. Following a general introduction to regression modeling, including typical applications, a host of technical tools are outlined such as basic inference procedures, introductory aspects of model adequacy checking, and polynomial regression models and their variations. The book then discusses how transformations and weighted least squares can be used to resolve problems of model inadequacy and also how to deal with influential observations. The Fifth Edition features numerous newly added topics, including: A chapter on regression analysis of time series data that presents the Durbin-Watson test and other techniques for detecting autocorrelation as well as parameter estimation in time series regression models Regression models with random effects in addition to a discussion on subsampling and the importance of the mixed model Tests on individual regression coefficients and subsets of coefficients Examples of current uses of simple linear regression models and the use of multiple regression models for understanding patient satisfaction data. In addition to Minitab, SAS, and S-PLUS, the authors have incorporated JMP and the freely available R software to illustrate the discussed techniques and procedures in this new edition. Numerous exercises have been added throughout, allowing readers to test their understanding of the material, and a related FTP site features the presented data sets, extensive problem solutions, software hints, and PowerPoint slides to facilitate instructional use of the book. Introduction to Linear Regression Analysis, Fifth Edition is an excellent book for statistics and engineering courses on regression at the upper-undergraduate and graduate levels. The book also serves as a valuable, robust resource for professionals in the fields of engineeri ...
Posted in:

Introduction to Linear Regression Analysis Book Solutions Manual Set

This book continues to present both the conventional and less common uses of linear regression in today's cutting-edge scientific research.

Author: Douglas C. Montgomery

Publisher: Wiley

ISBN: 111957871X

Category: Mathematics

Page: 944

View: 185

Download →

A comprehensive and up-to-date introduction to the fundamentals of regression analysis This set includes Introduction to Linear Regression Analysis, Sixth Edition and the Solutions Manual to accompany the text. This book continues to present both the conventional and less common uses of linear regression in today's cutting-edge scientific research. The authors blend both theory and application to equip readers with an understanding of the basic principles needed to apply regression model-building techniques in various fields of study, including engineering, management, and the health sciences. Introduction to Linear Regression Analysis is an excellent book for statistics and engineering courses on regression at the upper-undergraduate and graduate levels. The book also serves as a valuable, robust resource for professionals in the fields of engineering, life and biological sciences, and the social sciences.
Posted in: