## Probability: A Lively Introduction

**Author**: Henk Tijms

**Publisher:**Cambridge University Press

**ISBN:**1108418740

**Category:**Mathematics

**Page:**N.A

**View:**7717

**DOWNLOAD NOW »**

Comprehensive, yet concise, this textbook is the go-to guide to learn why probability is so important and its applications.

## Surprises in Probability

*Seventeen Short Stories*

**Author**: Henk Tijms

**Publisher:**CRC Press

**ISBN:**0429815492

**Category:**Mathematics

**Page:**144

**View:**5091

**DOWNLOAD NOW »**

This book brings together a variety of probability applications through entertaining stories that will appeal to a broad readership. What are the best stopping rules for the dating problem? What can Bayes’ formula tell us about the chances of a Champions League draw for soccer teams being rigged? How could syndicates win millions of lottery dollars by buying a multitude of tickets at the right time? What’s the best way to manage your betting bankroll in a game in which you have an edge? How to use probability to debunk quacks and psychic mediums? How can the Monte Carlo simulation be used to solve a wide variety of probability problems? Are seven riffle shuffles of a standard deck of 52 playing cards enough for randomness? Provides seventeen engaging stories that illustrate ideas in probability. Written so as to be suitable for those with minimal mathematical background. Stories can be read independently. Can be used as examples and exercises for teaching introductory probability. These questions and many more are addressed in seventeen short chapters that can be read independently. The engaging stories are instructive and demonstrate valuable probabilistic ideas. They offer students material that they most likely don’t learn in class, and offer teachers a new way of teaching their subject.

## Введение в теорию вероятностей и ее приложения

**Author**: В. Феллер

**Publisher:**Рипол Классик

**ISBN:**5458261208

**Category:**Science

**Page:**772

**View:**6067

**DOWNLOAD NOW »**

Большое число примеров применений теории в физике, биологии и экономике. Вместе с первым томом он составляет прекрасное учебное руководство, в котором очень удачно сочетаются и принципиальные основы, и важнейшие приложения теории вероятностей.

## Weighing the Odds

*A Course in Probability and Statistics*

**Author**: David Williams

**Publisher:**Cambridge University Press

**ISBN:**9780521006187

**Category:**Mathematics

**Page:**547

**View:**1128

**DOWNLOAD NOW »**

An advanced textbook; with many examples and exercises, often with hints or solutions; code is provided for computational examples and simulations.

## Elementary Probability for Applications

**Author**: Rick Durrett

**Publisher:**Cambridge University Press

**ISBN:**0521867568

**Category:**Mathematics

**Page:**243

**View:**7924

**DOWNLOAD NOW »**

Explains probability using genetics, sports, finance, current events and more.

## Глубокое обучение

**Author**: Ян Гудфеллоу,Иошуа Бенджио,Аарон Курвилль

**Publisher:**Litres

**ISBN:**N.A

**Category:**Education

**Page:**N.A

**View:**7211

**DOWNLOAD NOW »**

Глубокое обучение – это вид машинного обучения, наделяющий компьютеры способностью учиться на опыте и понимать мир в терминах иерархии концепций. Книга содержит математические и концептуальные основы линейной алгебры, теории вероятностей и теории информации, численных расчетов и машинного обучения в том объеме, который необходим для понимания материала. Описываются приемы глубокого обучения, применяемые на практике, в том числе глубокие сети прямого распространения, регуляризация, алгоритмы оптимизации, сверточные сети, моделирование последовательностей и др. Рассматриваются такие приложения, как обработка естественных языков, распознавание речи, компьютерное зрение, онлайновые рекомендательные системы, биоинформатика и видеоигры.Издание предназначено студентам вузов и аспирантам, а также опытным программистам, которые хотели бы применить глубокое обучение в составе своих продуктов или платформ.

## Probability for Statistics and Machine Learning

*Fundamentals and Advanced Topics*

**Author**: Anirban DasGupta

**Publisher:**Springer Science & Business Media

**ISBN:**9781441996343

**Category:**Mathematics

**Page:**784

**View:**8614

**DOWNLOAD NOW »**

This book provides a versatile and lucid treatment of classic as well as modern probability theory, while integrating them with core topics in statistical theory and also some key tools in machine learning. It is written in an extremely accessible style, with elaborate motivating discussions and numerous worked out examples and exercises. The book has 20 chapters on a wide range of topics, 423 worked out examples, and 808 exercises. It is unique in its unification of probability and statistics, its coverage and its superb exercise sets, detailed bibliography, and in its substantive treatment of many topics of current importance. This book can be used as a text for a year long graduate course in statistics, computer science, or mathematics, for self-study, and as an invaluable research reference on probabiliity and its applications. Particularly worth mentioning are the treatments of distribution theory, asymptotics, simulation and Markov Chain Monte Carlo, Markov chains and martingales, Gaussian processes, VC theory, probability metrics, large deviations, bootstrap, the EM algorithm, confidence intervals, maximum likelihood and Bayes estimates, exponential families, kernels, and Hilbert spaces, and a self contained complete review of univariate probability.

## Philosophy and Probability

**Author**: Timothy Childers

**Publisher:**Oxford University Press

**ISBN:**0199661820

**Category:**Philosophy

**Page:**194

**View:**7337

**DOWNLOAD NOW »**

Probability is increasingly important for our understanding of the world. What is probability? How do we model it, and how do we use it? Timothy Childers presents a lively introduction to the foundations of probability and to philosophical issues it raises. He keeps technicalities to a minimum, and assumes no prior knowledge of the subject. He explains the main interpretations of probability-frequentist, propensity, classical, Bayesian, and objective Bayesian-and uses stimulating examples to bring the subject to life. All students of philosophy will benefit from an understanding of probability, and this is the book to provide it.

## Probability with Applications in Engineering, Science, and Technology

**Author**: Matthew A. Carlton,Jay L. Devore

**Publisher:**Springer

**ISBN:**3319524011

**Category:**Mathematics

**Page:**643

**View:**986

**DOWNLOAD NOW »**

This updated and revised first-course textbook in applied probability provides a contemporary and lively post-calculus introduction to the subject of probability. The exposition reflects a desirable balance between fundamental theory and many applications involving a broad range of real problem scenarios. It is intended to appeal to a wide audience, including mathematics and statistics majors, prospective engineers and scientists, and those business and social science majors interested in the quantitative aspects of their disciplines. The textbook contains enough material for a year-long course, though many instructors will use it for a single term (one semester or one quarter). As such, three course syllabi with expanded course outlines are now available for download on the book’s page on the Springer website. A one-term course would cover material in the core chapters (1-4), supplemented by selections from one or more of the remaining chapters on statistical inference (Ch. 5), Markov chains (Ch. 6), stochastic processes (Ch. 7), and signal processing (Ch. 8 – available exclusively online and specifically designed for electrical and computer engineers, making the book suitable for a one-term class on random signals and noise). For a year-long course, core chapters (1-4) are accessible to those who have taken a year of univariate differential and integral calculus; matrix algebra, multivariate calculus, and engineering mathematics are needed for the latter, more advanced chapters. At the heart of the textbook’s pedagogy are 1,100 applied exercises, ranging from straightforward to reasonably challenging, roughly 700 exercises in the first four “core” chapters alone—a self-contained textbook of problems introducing basic theoretical knowledge necessary for solving problems and illustrating how to solve the problems at hand – in R and MATLAB, including code so that students can create simulations.

## An Introduction to Probability and Inductive Logic

**Author**: Ian Hacking

**Publisher:**Cambridge University Press

**ISBN:**9780521775014

**Category:**Mathematics

**Page:**302

**View:**7750

**DOWNLOAD NOW »**

An introductory 2001 textbook on probability and induction written by a foremost philosopher of science.

## Как не ошибаться

*Сила математического мышления*

**Author**: Джордан Элленберг

**Publisher:**"Манн, Иванов и Фербер"

**ISBN:**5001174112

**Category:**

**Page:**576

**View:**2888

**DOWNLOAD NOW »**

«Фрикономика в математике». Суперзвезда от науки (профессор математики и автор статей в New York Times, the Washington Post и Wired) раскрывает внутреннюю красоту и логику, стоящие за нашим миром. Элленберг рассказывает о самых разных явлениях и идеях — от рейганомики, лотерейных схем и искусственных языков до развития неевклидовой геометрии, живописи итальянского Ренессанса и того, что Фейсбук может (и что не может) узнать о вас.

## The A to Z of Logic

**Author**: Harry J. Gensler

**Publisher:**Scarecrow Press

**ISBN:**1461731828

**Category:**History

**Page:**354

**View:**3718

**DOWNLOAD NOW »**

The A to Z of Logic introduces the central concepts of the field in a series of brief, non-technical, cross-referenced dictionary entries. The 352 alphabetically arranged entries give a clear, basic introduction to a very broad range of logical topics. Entries can be found on deductive systems, such as propositional logic, modal logic, deontic logic, temporal logic, set theory, many-valued logic, mereology, and paraconsistent logic. Similarly, there are entries on topics relating to those previously mentioned such as negation, conditionals, truth tables, and proofs. Historical periods and figures are also covered, including ancient logic, medieval logic, Buddhist logic, Aristotle, Ockham, Boole, Frege, Russell, Gödel, and Quine. There are even entries relating logic to other areas and topics, like biology, computers, ethics, gender, God, psychology, metaphysics, abstract entities, algorithms, the ad hominem fallacy, inductive logic, informal logic, the liar paradox, metalogic, philosophy of logic, and software for learning logic. In addition to the dictionary, there is a substantial chronology listing the main events in the history of logic, an introduction that sketches the central ideas of logic and how it has evolved into what it is today, and an extensive bibliography of related readings. This book is not only useful for specialists but also understandable to students and other beginners in the field.

## A History of the Mathematical Theory of Probability

**Author**: Isaac Todhunter

**Publisher:**Cambridge University Press

**ISBN:**1108077641

**Category:**History

**Page:**646

**View:**4917

**DOWNLOAD NOW »**

A thorough account of the roots and development of probability theory, published in 1865 by a distinguished Cambridge mathematician.

## Logic: A Very Short Introduction

**Author**: Boyce Gibson Professor of Philosophy Graham Priest,Graham Priest

**Publisher:**Oxford Paperbacks

**ISBN:**9780192893208

**Category:**Philosophy

**Page:**128

**View:**8147

**DOWNLOAD NOW »**

Along the way, the book explains the basic ideas of formal logic in simple, non-technical terms, as well as the philosophical pressures to which these have responded. This is a book for anyone who has ever been puzzled by a piece of reasoning."--BOOK JACKET.

## Logic

*A Very Short Introduction*

**Author**: Graham Priest

**Publisher:**Oxford University Press

**ISBN:**0198811705

**Category:**Mathematics

**Page:**156

**View:**2573

**DOWNLOAD NOW »**

Logic is often perceived as having little to do with the rest of philosophy, and even less to do with real life. In this lively and accessible introduction, Graham Priest shows how wrong this conception is. He explores the philosophical roots of the subject, explaining how modern formal logic deals with issues ranging from the existence of God and the reality of time to paradoxes of probability and decision theory. Along the way, the basics of formal logic are explained in simple, non-technical terms, showing that logic is a powerful and exciting part of modern philosophy. In this new edition Graham Priest expands his discussion to cover the subjects of algorithms and axioms, and proofs in mathematics. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.

## Troika

*A Communicative Approach to Russian Language, Life, and Culture*

**Author**: Marita Nummikoski

**Publisher:**John Wiley & Sons

**ISBN:**0470646322

**Category:**Foreign Language Study

**Page:**676

**View:**7386

**DOWNLOAD NOW »**

This communicative "natural approach" to introductory Russian emphasizes reading, writing, speaking, and listening skills. Everyday topics are presented to allow readers to begin communicating immediately. Grammar is presented as a necessary tool for communication and is introduced throughout. The book aims at comparing and contrasting cultures, rather than presenting the target culture only.

## Probability with Martingales

**Author**: David Williams

**Publisher:**Cambridge University Press

**ISBN:**9780521406055

**Category:**Mathematics

**Page:**251

**View:**3226

**DOWNLOAD NOW »**

This is a masterly introduction to the modern and rigorous theory of probability. The author adopts the martingale theory as his main theme and moves at a lively pace through the subject's rigorous foundations. Measure theory is introduced and then immediately exploited by being applied to real probability theory. Classical results, such as Kolmogorov's Strong Law of Large Numbers and Three-Series Theorem are proved by martingale techniques. A proof of the Central Limit Theorem is also given. The author's style is entertaining and inimitable with pedagogy to the fore. Exercises play a vital role; there is a full quota of interesting and challenging problems, some with hints.

## Прелюдия к математике

**Author**: У.У. Сойер

**Publisher:**Рипол Классик

**ISBN:**5458255445

**Category:**Mathematics

**Page:**192

**View:**811

**DOWNLOAD NOW »**

Книга для тех кто любит математику и другие точные науки, для выбирающих свой путь в науку. Особенно рекомендую тем, кто считает математику скучным и не интересным предметом. Рассказ о некоторых любопытных областях математики С ПРЕДВАРИТЕЛЬНЫМ АНАЛИЗОМ математического склада УМА и целей математики. Книга "Прелюдия к математике", написанная автором Сойер У.У., предназначена для широкого круга читателей, интересующихся литературой из раздела. Книга может быть полезна и интересна студентам высших и средне-специальных учебных заведений.