Real Analysis

Foundations and Functions of One Variable
Author: Miklós Laczkovich,Vera T. Sós
Publisher: Springer
ISBN: 1493927663
Category: Mathematics
Page: 483
View: 5763
DOWNLOAD NOW »
Based on courses given at Eötvös Loránd University (Hungary) over the past 30 years, this introductory textbook develops the central concepts of the analysis of functions of one variable — systematically, with many examples and illustrations, and in a manner that builds upon, and sharpens, the student’s mathematical intuition. The book provides a solid grounding in the basics of logic and proofs, sets, and real numbers, in preparation for a study of the main topics: limits, continuity, rational functions and transcendental functions, differentiation, and integration. Numerous applications to other areas of mathematics, and to physics, are given, thereby demonstrating the practical scope and power of the theoretical concepts treated. In the spirit of learning-by-doing, Real Analysis includes more than 500 engaging exercises for the student keen on mastering the basics of analysis. The wealth of material, and modular organization, of the book make it adaptable as a textbook for courses of various levels; the hints and solutions provided for the more challenging exercises make it ideal for independent study.

Analysis I


Author: Wolfgang Walter
Publisher: Springer-Verlag
ISBN: 3662057077
Category: Mathematics
Page: 388
View: 5899
DOWNLOAD NOW »
Aus den Besprechungen: "Wodurch unterscheidet sich das hiermit begonnene Lehrwerk der Analysis von zahlreichen anderen, zum Teil im gleichen Verlag erschienenen, exzellenten Werken dieser Art? Mehreres ist zu nennen: (1) die ausführliche Berücksichtigung des Warum und Woher, der historischen Gesichtspunkte also, die in unserem von der Ratio geprägten Zeitalter ohnehin immer zu kurz kommen; (2) die Anerkennung der Existenz des Computers. Der Autor verschließt sich nicht vor der Tatsache, daß die Computermathematik (hier vor allem verstanden als numerische Mathematik) oft interessante Anwendungen der klassischen Analysis bietet. Als weitere attraktive Merkmale des Buches nennen wir (3) die große Fülle von Beispielen und nicht-trivialen (aber lösbaren) Übungsaufgaben, sowie (4) der häufige Bezug zu den Anwendungen. Man denke: Sogar die Theorie der gewöhnlichen Differentialgleichungen, vor der manche Lehrbuchautoren eine unüberwindliche Scheu zu haben scheinen, ist gut lesbar dargestellt, mit vernünftigen Anwendungen. Alles in Allem kann das Buch jedem Studierenden der Mathematik wegen der Fülle des Gebotenen und wegen des geschickten didaktischen Aufbaus auf das Wärmste empfohlen werden." ZAMP #1

Foundations of Analysis


Author: Joseph L. Taylor
Publisher: American Mathematical Soc.
ISBN: 0821889842
Category: Mathematics
Page: 398
View: 8459
DOWNLOAD NOW »
Foundations of Analysis is an excellent new text for undergraduate students in real analysis. More than other texts in the subject, it is clear, concise and to the point, without extra bells and whistles. It also has many good exercises that help illustrate the material. My students were very satisfied with it. --Nat Smale, University of Utah I have taught our Foundations of Analysis course (based on Joe Taylor.s book) several times recently, and have enjoyed doing so. The book is well-written, clear, and concise, and supplies the students with very good introductory discussions of the various topics, correct and well-thought-out proofs, and appropriate, helpful examples. The end-of-chapter problems supplement the body of the text very well (and range nicely from simple exercises to really challenging problems). --Robert Brooks, University of Utah An excellent text for students whose future will include contact with mathematical analysis, whatever their discipline might be. It is content-comprehensive and pedagogically sound. There are exercises adequate to guarantee thorough grounding in the basic facts, and problems to initiate thought and gain experience in proofs and counterexamples. Moreover, the text takes the reader near enough to the frontier of analysis at the calculus level that the teacher can challenge the students with questions that are at the ragged edge of research for undergraduate students. I like it a lot. --Don Tucker, University of Utah My students appreciate the concise style of the book and the many helpful examples. --W.M. McGovern, University of Washington Analysis plays a crucial role in the undergraduate curriculum. Building upon the familiar notions of calculus, analysis introduces the depth and rigor characteristic of higher mathematics courses. Foundations of Analysis has two main goals. The first is to develop in students the mathematical maturity and sophistication they will need as they move through the upper division curriculum. The second is to present a rigorous development of both single and several variable calculus, beginning with a study of the properties of the real number system. The presentation is both thorough and concise, with simple, straightforward explanations. The exercises differ widely in level of abstraction and level of difficulty. They vary from the simple to the quite difficult and from the computational to the theoretical. Each section contains a number of examples designed to illustrate the material in the section and to teach students how to approach the exercises for that section. The list of topics covered is rather standard, although the treatment of some of them is not. The several variable material makes full use of the power of linear algebra, particularly in the treatment of the differential of a function as the best affine approximation to the function at a given point. The text includes a review of several linear algebra topics in preparation for this material. In the final chapter, vector calculus is presented from a modern point of view, using differential forms to give a unified treatment of the major theorems relating derivatives and integrals: Green's, Gauss's, and Stokes's Theorems. At appropriate points, abstract metric spaces, topological spaces, inner product spaces, and normed linear spaces are introduced, but only as asides. That is, the course is grounded in the concrete world of Euclidean space, but the students are made aware that there are more exotic worlds in which the concepts they are learning may be studied.

A Course in Real Analysis


Author: Hugo D. Junghenn
Publisher: CRC Press
ISBN: 148221928X
Category: Mathematics
Page: 613
View: 6409
DOWNLOAD NOW »
A Course in Real Analysis provides a rigorous treatment of the foundations of differential and integral calculus at the advanced undergraduate level. The book’s material has been extensively classroom tested in the author’s two-semester undergraduate course on real analysis at The George Washington University. The first part of the text presents the calculus of functions of one variable. This part covers traditional topics, such as sequences, continuity, differentiability, Riemann integrability, numerical series, and the convergence of sequences and series of functions. It also includes optional sections on Stirling’s formula, functions of bounded variation, Riemann–Stieltjes integration, and other topics. The second part focuses on functions of several variables. It introduces the topological ideas (such as compact and connected sets) needed to describe analytical properties of multivariable functions. This part also discusses differentiability and integrability of multivariable functions and develops the theory of differential forms on surfaces in Rn. The third part consists of appendices on set theory and linear algebra as well as solutions to some of the exercises. A full solutions manual offers complete solutions to all exercises for qualifying instructors. With clear proofs, detailed examples, and numerous exercises, this textbook gives a thorough treatment of the subject. It progresses from single variable to multivariable functions, providing a logical development of material that will prepare students for more advanced analysis-based courses.

Understanding Analysis


Author: Stephen Abbott
Publisher: Springer
ISBN: 1493927124
Category: Mathematics
Page: 312
View: 934
DOWNLOAD NOW »
This lively introductory text exposes the student to the rewards of a rigorous study of functions of a real variable. In each chapter, informal discussions of questions that give analysis its inherent fascination are followed by precise, but not overly formal, developments of the techniques needed to make sense of them. By focusing on the unifying themes of approximation and the resolution of paradoxes that arise in the transition from the finite to the infinite, the text turns what could be a daunting cascade of definitions and theorems into a coherent and engaging progression of ideas. Acutely aware of the need for rigor, the student is much better prepared to understand what constitutes a proper mathematical proof and how to write one. Fifteen years of classroom experience with the first edition of Understanding Analysis have solidified and refined the central narrative of the second edition. Roughly 150 new exercises join a selection of the best exercises from the first edition, and three more project-style sections have been added. Investigations of Euler’s computation of ζ(2), the Weierstrass Approximation Theorem, and the gamma function are now among the book’s cohort of seminal results serving as motivation and payoff for the beginning student to master the methods of analysis.

Intermediate Real Analysis


Author: E. Fischer
Publisher: Springer Science & Business Media
ISBN: 1461394813
Category: Mathematics
Page: 770
View: 4783
DOWNLOAD NOW »
There are a great deal of books on introductory analysis in print today, many written by mathematicians of the first rank. The publication of another such book therefore warrants a defense. I have taught analysis for many years and have used a variety of texts during this time. These books were of excellent quality mathematically but did not satisfy the needs of the students I was teaching. They were written for mathematicians but not for those who were first aspiring to attain that status. The desire to fill this gap gave rise to the writing of this book. This book is intended to serve as a text for an introductory course in analysis. Its readers will most likely be mathematics, science, or engineering majors undertaking the last quarter of their undergraduate education. The aim of a first course in analysis is to provide the student with a sound foundation for analysis, to familiarize him with the kind of careful thinking used in advanced mathematics, and to provide him with tools for further work in it. The typical student we are dealing with has completed a three-semester calculus course and possibly an introductory course in differential equations. He may even have been exposed to a semester or two of modern algebra. All this time his training has most likely been intuitive with heuristics taking the place of proof. This may have been appropriate for that stage of his development.

Basic Real Analysis


Author: Houshang H. Sohrab
Publisher: Springer
ISBN: 1493918419
Category: Mathematics
Page: 683
View: 6940
DOWNLOAD NOW »
This expanded second edition presents the fundamentals and touchstone results of real analysis in full rigor, but in a style that requires little prior familiarity with proofs or mathematical language. The text is a comprehensive and largely self-contained introduction to the theory of real-valued functions of a real variable. The chapters on Lebesgue measure and integral have been rewritten entirely and greatly improved. They now contain Lebesgue’s differentiation theorem as well as his versions of the Fundamental Theorem(s) of Calculus. With expanded chapters, additional problems, and an expansive solutions manual, Basic Real Analysis, Second Edition is ideal for senior undergraduates and first-year graduate students, both as a classroom text and a self-study guide. Reviews of first edition: The book is a clear and well-structured introduction to real analysis aimed at senior undergraduate and beginning graduate students. The prerequisites are few, but a certain mathematical sophistication is required. ... The text contains carefully worked out examples which contribute motivating and helping to understand the theory. There is also an excellent selection of exercises within the text and problem sections at the end of each chapter. In fact, this textbook can serve as a source of examples and exercises in real analysis. —Zentralblatt MATH The quality of the exposition is good: strong and complete versions of theorems are preferred, and the material is organised so that all the proofs are of easily manageable length; motivational comments are helpful, and there are plenty of illustrative examples. The reader is strongly encouraged to learn by doing: exercises are sprinkled liberally throughout the text and each chapter ends with a set of problems, about 650 in all, some of which are of considerable intrinsic interest. —Mathematical Reviews [This text] introduces upper-division undergraduate or first-year graduate students to real analysis.... Problems and exercises abound; an appendix constructs the reals as the Cauchy (sequential) completion of the rationals; references are copious and judiciously chosen; and a detailed index brings up the rear. —CHOICE Reviews

Mathematical Analysis

A Concise Introduction
Author: Bernd S. W. Schröder
Publisher: John Wiley & Sons
ISBN: 9780470226766
Category: Mathematics
Page: 584
View: 469
DOWNLOAD NOW »
A self-contained introduction to the fundamentals of mathematical analysis Mathematical Analysis: A Concise Introduction presents the foundations of analysis and illustrates its role in mathematics. By focusing on the essentials, reinforcing learning through exercises, and featuring a unique "learn by doing" approach, the book develops the reader's proof writing skills and establishes fundamental comprehension of analysis that is essential for further exploration of pure and applied mathematics. This book is directly applicable to areas such as differential equations, probability theory, numerical analysis, differential geometry, and functional analysis. Mathematical Analysis is composed of three parts: ?Part One presents the analysis of functions of one variable, including sequences, continuity, differentiation, Riemann integration, series, and the Lebesgue integral. A detailed explanation of proof writing is provided with specific attention devoted to standard proof techniques. To facilitate an efficient transition to more abstract settings, the results for single variable functions are proved using methods that translate to metric spaces. ?Part Two explores the more abstract counterparts of the concepts outlined earlier in the text. The reader is introduced to the fundamental spaces of analysis, including Lp spaces, and the book successfully details how appropriate definitions of integration, continuity, and differentiation lead to a powerful and widely applicable foundation for further study of applied mathematics. The interrelation between measure theory, topology, and differentiation is then examined in the proof of the Multidimensional Substitution Formula. Further areas of coverage in this section include manifolds, Stokes' Theorem, Hilbert spaces, the convergence of Fourier series, and Riesz' Representation Theorem. ?Part Three provides an overview of the motivations for analysis as well as its applications in various subjects. A special focus on ordinary and partial differential equations presents some theoretical and practical challenges that exist in these areas. Topical coverage includes Navier-Stokes equations and the finite element method. Mathematical Analysis: A Concise Introduction includes an extensive index and over 900 exercises ranging in level of difficulty, from conceptual questions and adaptations of proofs to proofs with and without hints. These opportunities for reinforcement, along with the overall concise and well-organized treatment of analysis, make this book essential for readers in upper-undergraduate or beginning graduate mathematics courses who would like to build a solid foundation in analysis for further work in all analysis-based branches of mathematics.

Mathematical Foundations of Quantum Statistics


Author: Aleksandr Iakovlevich Khinchin
Publisher: Courier Corporation
ISBN: 9780486400259
Category: Science
Page: 232
View: 6631
DOWNLOAD NOW »
A coherent, well-organized look at the basis of quantum statistics’ computational methods, the determination of the mean values of occupation numbers, the foundations of the statistics of photons and material particles, thermodynamics.

Elementary Analysis

The Theory of Calculus
Author: Kenneth A. Ross
Publisher: Springer Science & Business Media
ISBN: 9780387904597
Category: Mathematics
Page: 264
View: 5214
DOWNLOAD NOW »
Designed for students having no previous experience with rigorous proofs, this text on analysis is intended to follow a standard calculus course. It will be useful for students planning to continue in mathematics (with, for example, complex variables, differential equations, numerical analysis, multivariable calculus, or statistics), as well as for future secondary school teachers.

A First Course in Real Analysis


Author: Murray H. Protter,Charles B. Jr. Morrey
Publisher: Springer Science & Business Media
ISBN: 9780387974378
Category: Mathematics
Page: 536
View: 8184
DOWNLOAD NOW »
Many changes have been made in this second edition of A First Course in Real Analysis. The most noticeable is the addition of many problems and the inclusion of answers to most of the odd-numbered exercises. The book's readability has also been improved by the further clarification of many of the proofs, additional explanatory remarks, and clearer notation.

Analysis III


Author: Herbert Amann,Joachim Escher
Publisher: Birkhäuser
ISBN: 9783764366148
Category: Mathematics
Page: 480
View: 5403
DOWNLOAD NOW »
Der vorliegende dritte Band beschlieBt unsere EinfUhrung in die Analysis, mit der wir ein Fundament fUr den weiteren Aufbau des Mathematikstudiums gelegt haben. Wie schon in den ersten beiden Teilen haben wir auch hier wesentlich mehr Stoff behandelt, als dies in einem Kurs geschehen kann. Bei der Vorbereitung von Vorlesungen ist deshalb eine geeignete Stoffauswahl zu treffen, auch wenn die Lehrveranstaltungen durch Seminare erganzt und vertieft werden. Anhand der ausfiihrlichen Inhaltsangabe und der Einleitungen zu den einzelnen Kapiteln kann ein rascher Uberblick Uber den dargebotenen Stoff gewonnen werden. Das Buch ist insbesondere auch als BegleitlektUre zu Vorlesungen und fUr das Selbststudium geeignet. Die zahlreichen Ausblicke auf weiterfUhrende Theorien sollen Neugierde wecken und dazu animieren, im Verlaufe des weiteren Studiums tiefer einzudringen und mehr von der Schonheit und GroBe des mathematischen Gebaudes zu erfahren. Beim Verfassen dieses Bandes konnten wir wieder auf die unschatzbare Hil fe von Freunden, Kollegen, Mitarbeitern und Studenten ziihlen. Ganz besonders danken wir Georg Prokert, Pavol Quittner, Olivier Steiger und Christoph Wal ker, die den gesamten Text kritisch durchgearbeitet und uns so geholfen haben, Fehler zu eliminieren und substantielle Verbesserungen anzubringen. Unser Dank gilt auch Carlheinz Kneisel und Bea Wollenmann, die ebenfalls groBere Teile des Manuskripts gelesen und uns auf Ungereimtheiten hingewiesen haben.

Handbook of Analysis and Its Foundations


Author: Eric Schechter
Publisher: Academic Press
ISBN: 9780080532998
Category: Mathematics
Page: 883
View: 7607
DOWNLOAD NOW »
Handbook of Analysis and Its Foundations is a self-contained and unified handbook on mathematical analysis and its foundations. Intended as a self-study guide for advanced undergraduates and beginning graduatestudents in mathematics and a reference for more advanced mathematicians, this highly readable book provides broader coverage than competing texts in the area. Handbook of Analysis and Its Foundations provides an introduction to a wide range of topics, including: algebra; topology; normed spaces; integration theory; topological vector spaces; and differential equations. The author effectively demonstrates the relationships between these topics and includes a few chapters on set theory and logic to explain the lack of examples for classical pathological objects whose existence proofs are not constructive. More complete than any other book on the subject, students will find this to be an invaluable handbook. Covers some hard-to-find results including: Bessagas and Meyers converses of the Contraction Fixed Point Theorem Redefinition of subnets by Aarnes and Andenaes Ghermans characterization of topological convergences Neumanns nonlinear Closed Graph Theorem van Maarens geometry-free version of Sperners Lemma Includes a few advanced topics in functional analysis Features all areas of the foundations of analysis except geometry Combines material usually found in many different sources, making this unified treatment more convenient for the user Has its own webpage: http://math.vanderbilt.edu/

Advanced Calculus

A Geometric View
Author: James J. Callahan
Publisher: Springer Science & Business Media
ISBN: 9781441973320
Category: Mathematics
Page: 526
View: 1710
DOWNLOAD NOW »
With a fresh geometric approach that incorporates more than 250 illustrations, this textbook sets itself apart from all others in advanced calculus. Besides the classical capstones--the change of variables formula, implicit and inverse function theorems, the integral theorems of Gauss and Stokes--the text treats other important topics in differential analysis, such as Morse's lemma and the Poincaré lemma. The ideas behind most topics can be understood with just two or three variables. The book incorporates modern computational tools to give visualization real power. Using 2D and 3D graphics, the book offers new insights into fundamental elements of the calculus of differentiable maps. The geometric theme continues with an analysis of the physical meaning of the divergence and the curl at a level of detail not found in other advanced calculus books. This is a textbook for undergraduates and graduate students in mathematics, the physical sciences, and economics. Prerequisites are an introduction to linear algebra and multivariable calculus. There is enough material for a year-long course on advanced calculus and for a variety of semester courses--including topics in geometry. The measured pace of the book, with its extensive examples and illustrations, make it especially suitable for independent study.

Measure and Integral

An Introduction to Real Analysis, Second Edition
Author: Richard L. Wheeden
Publisher: CRC Press
ISBN: 1498702902
Category: Mathematics
Page: 532
View: 4563
DOWNLOAD NOW »
Now considered a classic text on the topic, Measure and Integral: An Introduction to Real Analysis provides an introduction to real analysis by first developing the theory of measure and integration in the simple setting of Euclidean space, and then presenting a more general treatment based on abstract notions characterized by axioms and with less geometric content. Published nearly forty years after the first edition, this long-awaited Second Edition also: Studies the Fourier transform of functions in the spaces L1, L2, and Lp, 1 p Shows the Hilbert transform to be a bounded operator on L2, as an application of the L2 theory of the Fourier transform in the one-dimensional case Covers fractional integration and some topics related to mean oscillation properties of functions, such as the classes of Hölder continuous functions and the space of functions of bounded mean oscillation Derives a subrepresentation formula, which in higher dimensions plays a role roughly similar to the one played by the fundamental theorem of calculus in one dimension Extends the subrepresentation formula derived for smooth functions to functions with a weak gradient Applies the norm estimates derived for fractional integral operators to obtain local and global first-order Poincaré–Sobolev inequalities, including endpoint cases Proves the existence of a tangent plane to the graph of a Lipschitz function of several variables Includes many new exercises not present in the first edition This widely used and highly respected text for upper-division undergraduate and first-year graduate students of mathematics, statistics, probability, or engineering is revised for a new generation of students and instructors. The book also serves as a handy reference for professional mathematicians.

Analysis I

Third Edition
Author: Terence Tao
Publisher: Springer
ISBN: 9811017891
Category: Mathematics
Page: 350
View: 4121
DOWNLOAD NOW »
This is part one of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.

Analysis by Its History


Author: Ernst Hairer,Gerhard Wanner
Publisher: Springer Science & Business Media
ISBN: 0387770313
Category: Mathematics
Page: 382
View: 5466
DOWNLOAD NOW »
This book presents first-year calculus roughly in the order in which it was first discovered. The first two chapters show how the ancient calculations of practical problems led to infinite series, differential and integral calculus and to differential equations. The establishment of mathematical rigour for these subjects in the 19th century for one and several variables is treated in chapters III and IV. Many quotations are included to give the flavor of the history. The text is complemented by a large number of examples, calculations and mathematical pictures and will provide stimulating and enjoyable reading for students, teachers, as well as researchers.

Analysis II

Third Edition
Author: Terence Tao
Publisher: Springer
ISBN: 9811018049
Category: Mathematics
Page: 220
View: 6551
DOWNLOAD NOW »
This is part two of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.

Introduction to Analysis


Author: Maxwell Rosenlicht
Publisher: Courier Corporation
ISBN: 0486134687
Category: Mathematics
Page: 272
View: 5199
DOWNLOAD NOW »
Written for junior and senior undergraduates, this remarkably clear and accessible treatment covers set theory, the real number system, metric spaces, continuous functions, Riemann integration, multiple integrals, and more. 1968 edition.

Real Analysis for the Undergraduate

With an Invitation to Functional Analysis
Author: Matthew A. Pons
Publisher: Springer Science & Business Media
ISBN: 1461496381
Category: Mathematics
Page: 409
View: 7701
DOWNLOAD NOW »
This undergraduate textbook introduces students to the basics of real analysis, provides an introduction to more advanced topics including measure theory and Lebesgue integration, and offers an invitation to functional analysis. While these advanced topics are not typically encountered until graduate study, the text is designed for the beginner. The author’s engaging style makes advanced topics approachable without sacrificing rigor. The text also consistently encourages the reader to pick up a pencil and take an active part in the learning process. Key features include: - examples to reinforce theory; - thorough explanations preceding definitions, theorems and formal proofs; - illustrations to support intuition; - over 450 exercises designed to develop connections between the concrete and abstract. This text takes students on a journey through the basics of real analysis and provides those who wish to delve deeper the opportunity to experience mathematical ideas that are beyond the standard undergraduate curriculum.